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Lagrangian
• Consider an optimization problem in standard form (not necessarily

convex) minimize
x

f0 (x)

subject to fi (x) ≤ 0 i = 1, . . . ,m

hi (x) = 0 i = 1, . . . , p

with variable x ∈ Rn, domain D, and optimal value p?.

• The Lagrangian is a function L : Rn × Rm × Rp → R, with

domL = D ×Rm ×Rp, defined as

L (x, λ, ν) = f0 (x) +
m∑
i=1

λifi (x) +

p∑
i=1

νihi (x)

where λi is the Lagrange multiplier associated with fi (x) ≤ 0 and

νi is the Lagrange multiplier associated with hi (x) = 0.
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Lagrange Dual Function

• The Lagrange dual function is defined as the infimum of the

Lagrangian over x: g : Rm ×Rp→ R,

g (λ, ν) = inf
x∈D

L (x, λ, ν)

= inf
x∈D

(
f0 (x) +

m∑
i=1

λifi (x) +

p∑
i=1

νihi (x)

)
• Observe that:

– the infimum is unconstrained (as opposed to the original con-

strained minimization problem)

– g is concave regardless of original problem (infimum of affine

functions)

– g can be −∞ for some λ, ν
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Lower bound property: if λ ≥ 0, then g (λ, ν) ≤ p?.

Proof. Suppose x̃ is feasible and λ ≥ 0. Then,

f0 (x̃) ≥ L (x̃, λ, ν) ≥ inf
x∈D

L (x, λ, ν) = g (λ, ν) .

Now choose minimizer of f0 (x̃) over all feasible x̃ to get p? ≥ g (λ, ν). 2

• We could try to find the best lower bound by maximizing g (λ, ν).

This is in fact the dual problem.
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Dual Problem

• The Lagrange dual problem is defined as

maximize
λ,ν

g (λ, ν)

subject to λ ≥ 0.

• This problem finds the best lower bound on p? obtained from the

dual function.

• It is a convex optimization (maximization of a concave function and

linear constraints).

• The optimal value is denoted d?.

• λ, ν are dual feasible if λ ≥ 0 and (λ, ν) ∈ dom g (the latter implicit

constraints can be made explicit in problem formulation).
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Example: Least-Norm Solution of Linear Equations

• Consider the problem

minimize
x

xTx

subject to Ax = b.

• The Lagrangian is

L (x, ν) = xTx+ νT (Ax− b) .

• To find the dual function, we need to solve an unconstrained

minimization of the Lagrangian. We set the gradient equal to zero

∇xL (x, ν) = 2x+ATν = 0 =⇒ x = − (1/2)ATν
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and we plug the solution in L to obtain g:

g (ν) = L
(
− (1/2)ATν, ν

)
= −1

4
νTAATν − bTν

• The function g is, as expected, a concave function of ν.

• From the lower bound property, we have

p? ≥ −1

4
νTAATν − bTν for all ν.

• The dual problem is the QP

maximize
ν

−1
4ν
TAATν − bTν.
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Example: Standard Form LP

• Consider the problem

minimize
x

cTx

subject to Ax = b, x ≥ 0.

• The Lagrangian is

L (x, λ, ν) = cTx+ νT (Ax− b)− λTx

=
(
c+ATν − λ

)T
x− bTν.

• L is a linear function of x and it is unbounded if the term multiplying

x is nonzero.
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• Hence, the dual function is

g (λ, ν) = inf
x
L (x, λ, ν) =

{
−bTν c+ATν − λ = 0

−∞ otherwise.

• The function g is a concave function of (λ, ν) as it is linear on an

affine domain.

• From the lower bound property, we have

p? ≥ −bTν if c+ATν ≥ 0.

• The dual problem is the LP

maximize
ν

−bTν
subject to c+ATν ≥ 0.
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Example: Two-Way Partitioning

• Consider the problem

minimize
x

xTWx

subject to x2
i = 1, i = 1, . . . , n.

• It is a nonconvex problem (quadratic equality constraints). The

feasible set contains 2n discrete points.

• The Lagrangian is

L (x, ν) = xTWx+
n∑
i=1

νi
(
x2
i − 1

)
= xT (W + diag (ν))x− 1Tν.

• L is a quadratic function of x and it is unbounded if the matrix

W + diag (ν) has a negative eigenvalue.
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• Hence, the dual function is

g (ν) = inf
x
L (x, ν) =

{
−1Tν W + diag (ν) � 0

−∞ otherwise.

• From the lower bound property, we have

p? ≥ −1Tν if W + diag (ν) � 0.

• As an example, if we choose ν = −λmin (W ) 1, we get the bound

p? ≥ nλmin (W ) .

• The dual problem is the SDP

maximize
ν

−1Tν

subject to W + diag (ν) � 0.
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Weak and Strong Duality

• From the lower bound property, we know that g (λ, ν) ≤ p? for

feasible (λ, ν). In particular, for a (λ, ν) that solves the dual

problem.

• Hence, weak duality always holds (even for nonconvex problems):

d? ≤ p?.

• The difference p? − d? is called duality gap.

• Solving the dual problem may be used to find nontrivial lower bounds

for difficult problems.
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• Even more interesting is when equality is achieved in weak duality.

This is called strong duality :

d? = p?.

• Strong duality means that the duality gap is zero.

• Strong duality:

– is very desirable (we can solve a difficult problem by solving the

dual)

– does not hold in general

– usually holds for convex problems

– conditions that guarantee strong duality in convex problems are

called constraint qualifications.
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Slater’s Constraint Qualification

• Slater’s constraint qualification is a very simple condition that

is satisfied in most cases and ensures strong duality for convex

problems.

• Strong duality holds for a convex problem

minimize
x

f0 (x)

subject to fi (x) ≤ 0 i = 1, . . . ,m

Ax = b

if it is strictly feasible, i.e.,

∃x ∈ intD : fi (x) < 0 i = 1, . . . ,m, Ax = b.
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• It can be relaxed by using relintD (interior relative to affine hull)

instead of intD; linear inequalities do not need to hold with strict

inequality, ...

• There exist many other types of constraint qualifications.
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Example: Inequality Form LP

• Consider the problem

minimize
x

cTx

subject to Ax ≤ b.

• The dual problem is

maximize
λ

−bTλ
subject to ATλ+ c = 0, λ ≥ 0.

• From Slater’s condition: p? = d? if Ax̃ < b for some x̃.

• In this case, in fact, p? = d? except when primal and dual are

infeasible.
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Example: Convex QP

• Consider the problem (assume P � 0)

minimize
x

xTPx

subject to Ax ≤ b.

• The dual problem is

maximize
λ

− (1/4)λTAP−1ATλ− bTλ
subject to λ ≥ 0.

• From Slater’s condition: p? = d? if Ax̃ < b for some x̃.

• In this case, in fact, p? = d? always.
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Example: Nonconvex QP

• Consider the problem

minimize
x

xTAx+ 2bTx

subject to xTx ≤ 1

which is nonconvex in general as A � 0.

• The dual problem is

maximize
λ

−bT (A+ λI)
#
b− λ

subject to A+ λI � 0

b ∈ R (A+ λI)
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which can be rewritten as

maximize
t,λ

−t− λ

subject to

[
A+ λI b

bT t

]
� 0.

• In this case, strong duality holds even though the original problem

is nonconvex (not trivial).
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Complementary Slackness
• Assume strong duality holds, x? is primal optimal and (λ?, ν?) is

dual optimal. Then,

f0 (x?) = g (λ?, ν?) = inf
x

(
f0 (x) +

m∑
i=1

λ?ifi (x) +

p∑
i=1

ν?i hi (x)

)

≤ f0 (x?) +

m∑
i=1

λ?ifi (x
?) +

p∑
i=1

ν?i hi (x
?)

≤ f0 (x?)

• Hence, the two inequalities must hold with equality. Implications:

– x? minimizes L (x, λ?, ν?)

– λ?ifi (x
?) = 0 for i = 1, . . . ,m; this is called complementary

slackness:

λ?i > 0 =⇒ fi (x
?) = 0, fi (x

?) < 0 =⇒ λ?i = 0.
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Karush-Kuhn-Tucker (KKT) Conditions

KKT conditions (for differentiable fi, hi):

1. primal feasibility: fi (x) ≤ 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . , p

2. dual feasibility: λ ≥ 0

3. complementary slackness: λ?ifi (x
?) = 0 for i = 1, . . . ,m

4. zero gradient of Lagrangian with respect to x:

∇f0 (x) +
m∑
i=1

λi∇fi (x) +

p∑
i=1

νi∇hi (x) = 0
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• We already known that if strong duality holds and x, λ, ν are optimal,

then they must satisfy the KKT conditions.

• What about the opposite statement?

• If x, λ, ν satisfy the KKT conditions for a convex problem, then they

are optimal.

Proof. From complementary slackness, f0 (x) = L (x, λ, ν) and, from 4th KKT

condition and convexity, g (λ, ν) = L (x, λ, ν). Hence, f0 (x) = g (λ, ν). 2

Theorem. If a problem is convex and Slater’s condition is satisfied,

then x is optimal if and only if there exists λ, ν that satisfy the KKT

conditions.
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Perturbation and Sensitivity Analysis

• Recall the original (unperturbed) optimization problem and its dual:

minimize
x

f0 (x)

subject to fi (x) ≤ 0 ∀i
hi (x) = 0 ∀i

maximize
λ,ν

g (λ, ν)

subject to λ ≥ 0

• Define the perturbed problem and dual as

minimize
x

f0 (x)

subject to fi (x) ≤ ui ∀i
hi (x) = vi ∀i

maximize
λ,ν

g (λ, ν)− uTλ− vTν

subject to λ ≥ 0

• x is primal variable and u, v are parameters

• Define p? (u, v) as the optimal value as a function of u, v.
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• Global sensitivity: Suppose strong duality holds for unperturbed

problem and λ?, ν? are dual optimal for unperturbed problem. Then,

from weak duality:

p? (u, v) ≥ g (λ?, ν?)− uTλ? − vTν?

= p? (0, 0)− uTλ? − vTν?

• Interpretation:

– if λ?i large: p? increases a lot if we tighten constraint i (ui < 0)

– if λ?i small: p? does not decrease much if we loosen constraint i

(ui > 0)

– if ν?i large and positive: p? increases a lot if we take vi < 0

– if ν?i large and negative: p? increases a lot if we take vi > 0

– etc.
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• Local sensitivity: Suppose strong duality holds for unperturbed

problem, λ?, ν? are dual optimal for unperturbed problem, and

p? (u, v) is differentiable at (0, 0). Then,

∂p? (0, 0)

∂ui
= −λ?i ,

∂p? (0, 0)

∂vi
= −ν?i

Proof. (for λ?i )From the global sensitivity result, we have

∂p? (0, 0)

∂ui
= lim

ε↓0

p? (tei, 0)− p? (0, 0)

t
≥ lim

ε↓0

−tλ?i
t

= −λ?i

∂p? (0, 0)

∂ui
= lim

ε↑0

p? (tei, 0)− p? (0, 0)

t
≤ lim

ε↑0

−tλ?i
t

= −λ?i .

Hence, the equality. 2
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Duality and Problem Reformulations

• Equivalent formulations of a problem can lead to very different duals.

• Reformulating the primal problem can be useful when the dual is

difficult to derive or uninteresting.

• Common tricks:

– introduce new variables and equality constraints

– make explicit constraints implicit or vice-versa

– transform objective or constraint functions (e.g., replace f0 (x) by

φ (f0 (x)) with φ convex and increasing).
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Example: Introducing New Variables

• Consider the problem

minimize
x

‖Ax− b‖2 .

• We can rewrite it as

minimize
x,y

‖y‖2
subject to y = Ax− b.

• We can then derive the dual problem:

maximize
ν

bTν

subject to ATν = 0, ‖ν‖2 ≤ 1.
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Example: Implicit Constraints

• Consider the following LP with box constrains:

minimize
x

cTx

subject to Ax = b

−1 ≤ x ≤ 1

• The dual problem is

maximize
ν,λ1,λ2

−bTν − 1Tλ1 − 1Tλ2

subject to c+ATν + λ1 − λ2 = 0

λ1 ≥ 0, λ2 ≥ 0,

which does not give much insight.
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• If, instead, we rewrite the primal problem as

minimize
x

f0 (x) =

{
cTx −1 ≤ x ≤ 1

∞ otherwise

subject to Ax = b

then the dual becomes way more insightful:

maximize
ν

−bTν −
∥∥ATν + c

∥∥
1
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Duality for Problems with Generalized Inequalities

• The Lagrange duality can be naturally extended to generalized

inequalities of the form

fi (x) �Ki 0

where �Ki is a generalized inequality on Rki with respect to the

cone Ki.

• The corresponding dual variable has to satisfy

λi �K∗i 0

where K∗i is the dual cone of Ki.
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Semidefinite Programming (SDP)

• Consider the following SDP (Fi, G ∈ Rk×k):

minimize
x

cTx

subject to x1F1 + · · ·+ xnFn � G.

• The Lagrange multiplier is a matrix Ψ ∈ Rk×k and the Lagrangian

L (x,Ψ) = cTx+ Tr (Ψ (x1F1 + · · ·+ xnFn −G))

• The dual problem is

maximize
Ψ

−Tr (ΨG)

subject to Tr (ΨFi) + ci = 0, i = 1, . . . , n

Ψ � 0.
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Application: Waterfilling Solution

• Consider the maximization of the mutual information in a MIMO

channel under Gaussian noise:

maximize
Q

log det
(
Rn + HQH†

)
subject to Tr (Q) ≤ P

Q � 0.

• This problem is convex: the logdet function is concave, the trace

constraint is just a linear constraint, and the positive semidefiniteness

constraint is an LMI.

• Hence, we can use a general-purpose method such as an interior-

point method to solve it in polynomial time.
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• However, this problem admits a closed-form solution as can be

derived from the KKT conditions.

• The Lagrangian is

L (Q;µ,Ψ) = − log det
(
Rn + HQH†

)
+µ (Tr (Q)− P )−Tr (ΨQ) .

• The gradient of the Lagrangian is

∇QL = −H†
(
Rn + HQH†

)−1
H + µI−Ψ.
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• The KKT conditions are

Tr (Q) ≤ P, Q � 0

µ ≥ 0, Ψ � 0

H†
(
Rn + HQH†

)−1
H + Ψ = µI

µ (Tr (Q)− P ) = 0, ΨQ = 0.

• Can we find a Q that satisfies the KKT conditions (together with

some dual variables)?
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• First, let’s simplify the KKT conditions by defining the so-called

whitened channel : H̃ = R
−1/2
n H.

• Then, the third KKT condition becomes:

H̃†
(
I + H̃QH̃†

)−1

H̃ + Ψ = µI.

• To simplify even further, let’s write the SVD of the channel matrix

as H̃ = UΣV† (denote the eigenvalues σi), obtaining:

Σ†
(
I + ΣQ̃Σ†

)−1

Σ + Ψ̃ = µI.

where Q̃ = V†QV and Ψ̃ = V†ΨV.
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• The KKT conditions are:

Tr(Q̃) ≤ P, Q̃ � 0

µ ≥ 0, Ψ̃ � 0

Σ†
(
I + ΣQ̃Σ†

)−1

Σ + Ψ̃ = µI

µ
(

Tr(Q̃)− P
)

= 0, Ψ̃Q̃ = 0.

• At this point, we can make a guess: perhaps the optimal Q̃ and Ψ̃

are diagonal? Let’s try ...
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• Define Q̃ = diag (p) (p is the power allocation) and Ψ̃ = diag (ψ).

• The KKT conditions become:∑
i

pi ≤ P, pi ≥ 0

µ ≥ 0, ψi ≥ 0

σ2
i

1 + σ2
i pi

+ ψi = µ

µ

(∑
i

pi − P

)
= 0 , ψipi = 0.

• Let’s now look into detail at the KKT conditions.
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• First of all, observe that µ > 0, otherwise we would have
σ2
i

1+σ2
i pi

+

ψi = 0 which cannot be satisfied.

• Let’s distinguish two cases in the power allocation:

– if pi > 0, then ψi = 0 =⇒ σ2
i

1+σ2
i pi

= µ =⇒ pi = µ−1− 1/σ2
i (also

note that µ =
σ2
i

1+σ2
i pi

< σ2
i )

– if pi = 0, then σ2
i + ψi = µ (note that µ = σ2

i + ψi ≥ σ2
i .

• Equivalently,

– if σ2
i > µ, then pi = µ−1 − 1/σ2

i

– if σ2
i ≤ µ, then pi = 0.
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• More compactly, we can write the well-known waterfilling solution:

pi =
(
µ−1 − 1/σ2

i

)+
where µ−1 is called water-level and is chosen to satisfy

∑
i pi = P

(so that all the KKT conditions are satisfied).

• Therefore, the optimal solution is given by

Q? = Vdiag (p) V†

where

– the optimal transmit directions are matched to the channel matrix

– the optimal power allocation is the waterfilling.
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Summary

• We have introduced the Lagrange duality theory: Lagrangian, dual

function, and dual problem.

• We have developed the optimality conditions for convex problems:

the KKT conditions.

• We have illustrated the used of the KKT conditions to find the

closed-form solution to a problem.

• We have overviewed some additional concepts such as duals of refor-

mulations of problems, sensitivity analysis, generalized inequalities,

and SDP.
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