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Recall of previous classification models

Logistic regression:

Hypothesis function:

hw(x) = σ(w⊤x) (1)

Cost function:

Cost = − log σ(y ·w⊤x) (2)

Learning algorithm:

w← w − η∇wJ(w) (3)

Support vector machine:

Hypothesis function:

hw(x) = w⊤x+ b (4)

Cost function:

Cost = max(0, 1− y · (w⊤x+ b))
(5)

Learning algorithm: Lagrange dual-
ity and KKT conditions
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Recall of previous classification models

In above two models, we mainly focus on designing the hypothesis function,
cost function, learning algorithm, while defaultly assuming that the feature
x is given as a vector
However, for practical tasks, such as image classification or text classifica-
tion, how to transform the image/text to vector x?
There are many studies on how to extract informative features from data,
such as SIFT, HOG, optical flow features from image/video. All these fea-
tures are handcrafted features, independent of the learning of classifier.
We will introduce neural networks, which combines feature learning and
classifier learning together.
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Neuron

Our brain has ∼ 1011 neurons, each of which communicates (is connected)
to ∼ 104 other neurons

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning: Lecture 09 Neural NetworksOctober 24/26, 2023 7 / 53



Neuron model

In biological neuron model, the neurons are connected to others. There are
positive and negative electric potentials in each neuron. If the number of
positive electric potentials is over one threshold, then it is activated to send
chemical substances to other connected neurons, leading to the change of
the electric potentials of these neurons.

Inspired by that phenomenon, in 1943, MaCulloch and Pitts proposed the
M-P neuron model, as follows.
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Neuron model

For neural nets, we use a much simpler model neuron, or unit:

Compare with logistic regression: y = σ
(
w⊤x+ b

)

By throwing together lots of these incredibly simplistic neuron-like process-
ing units, we can do some powerful computations!
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Activation functions

(a) Linear
y = z

(b) Rectified Linear
Unit(ReLU) y = max(0, z)

(c) Soft ReLU y = log 1 +
ez

(d) Hard Threshold

y =

{
1 if z > 0

0 if z ≤ 0
(e) Logistic
y = 1

1+e−z

(f) Hyperbolic Tangent
(tanh)

y = ez−e−z

ez+e−z
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Perceptron model

Perceptron model:

One input layer to receive input signals
One output layer including one M-P neuron, also called
threshold logic unit

Formulation: y = f(w⊤x+ b) = Sgn(w⊤x+ b)

Objective function:

J(w) =
1

2
(y − ŷ)2 =

1

2
(Sgn(w⊤x+ b)− ŷ)2,

where ŷ denotes the ground-truth label.

Learning by gradient descent:

w← w − η(y − ŷ)x,

where the gradient of Sgn(·) is approximated as 1.

Prediction for a new data xt:

predict y = +1, if w⊤x+ b > 0
predict y = −1, if w⊤x+ b ≤ 0
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Basic logic problems

(a) AND (a) OR (C) NOT

A perceptron can model any simple binary Boolean gate.
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Basic logic problems

A perceptron cannot model XOR problem.
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Basic logic problems

(a) ‘And’ Problem (x1 ∧ x2) (b) ‘Or’ Problem (x1 ∨ x2)

(c) ‘Not’ Problem (¬x1) (d) ‘XOR’ Problem (x1
⊕

x2)
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Multi-layer feedforward neural networks

Definition:

Input layer, hidden layer(s), output
layer
Only one direction from the input layer
to the output layer
Fully connection between two layers
No connections among neurons in the
same layer, no connections among neu-
rons in non-adjacent layers (no skip con-
nections)

Formulation:

y = g1(w
⊤h+ b)

h = g2(Wx+ c)

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning: Lecture 09 Neural NetworksOctober 24/26, 2023 16 / 53



XOR problem

y = g1(w
⊤h+ b) = Sgn

( [ 1
−1

]⊤
h− 0.5)

h = g2(Wx+ c) = Sgn
( [1 1

1 1

]
x−

[
0.5
1.5

] )
Try to transform the data in the original
space to the hidden space of the neural
network, and compute the output:
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XOR problem

y = g1(w
⊤h+ b) = max

(
0,

[
1
−2

]⊤
h− 0.5

)
h = g2(Wx+ c) = max

(
0,

[
1 1
1 1

]
x+

[
0
−1

])

Try to transform the data in the original space
to the hidden space of the neural network, and
compute the output:
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Multi-layer feedforward neural networks

Each layer computes a function, so the network
computes a composition of functions:

h(1) = f (1)(x)

h(2) = f (2)(h(1))

...

y = f (L)(h(L−1))

Or more simply:

y = f (L) ◦ . . . ◦ f (1)(x)

Neural nets provide modularity: we can implement
each layer’s computations as a black box.
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Multi-layer feedforward neural networks

Neural nets can be viewed as a way of learning features:

The goal: non-linearly separable to linearly separable
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Multi-layer feedforward neural networks

Input representation of a digit: 784 dimensional vector.
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Multi-layer feedforward neural networks

Suppose we’re trying to classify images of handwritten digits. Each image
is represented as a vector of 28× 28 = 784 pixel values.

Each first-layer hidden unit computes σ(wT
j x). It acts as a feature detec-

tor.

We can visualize wj by reshaping it into an image. Here’s an example that
responds to a digital stroke.
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Training Multi-layer feedforward neural networks

Let’s consider the gradient of the following loss function:

L =
1

2

(
σ(wx+ b)− t

)2
. (6)

For clarity, here w, x, b, t are scalars.

Please compute the derivatives w.r.t. w and b, respectively.

L =
1

2
(σ(wx + b) − t)

2 ∂L
∂b

=
∂

∂b

[
1

2
(σ(wx + b) − t)

2

]
∂L
∂w

=
∂

∂w

[
1

2
(σ(wx + b) − t)

2

]
=

1

2

∂

∂b
(σ(wx + b) − t)

2

=
1

2

∂

∂w
(σ(wx + b) − t)

2
= (σ(wx + b) − t)

∂

∂b
(σ(wx + b) − t)

= (σ(wx + b) − t)
∂

∂w
(σ(wx + b) − t) = (σ(wx + b) − t)σ

′
(wx + b)

∂

∂b
(wx + b)

= (σ(wx + b) − t)σ
′
(wx + b)

∂

∂w
(wx + b) = (σ(wx + b) − t)σ

′
(wx + b)

= (σ(wx + b) − t)σ
′
(wx + b)x
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Backpropagation

Chain rule: if f(h) and h(w) are univariate functions, then

df(h(w))

dw
=

df

dh
· dh
dw

. (7)
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Backpropagation

We write the above loss function again for comparison,

L =
1

2

(
σ(wx+ b)− t

)2
. (8)

We can rewrite it as follows:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

Let’s compute the loss derivatives.
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Backpropagation

A more structured way to do it

Computing the loss: Computing the derivatives:

z = wx+ b
dL
dy

= y − t

y = σ(z)
dL
dz

=
dL
dy

dy

dz
=

dL
dy

σ′(z)

L =
1

2
(y − t)2

∂L
∂w

=
dL
dz

∂z

∂w
=

dL
dz

x

∂L
∂b

=
dL
dz

∂z

∂b
=

dL
dz

Remember, the goal isn’t to obtain closed-form solutions, but to be able to write
a program that efficiently computes the derivatives.
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Computational graph

We can diagram out the computations using a computational graph (CG).

The nodes represent all the inputs and computed quantities, and the edges
represent which nodes are computed directly as a function of which other
nodes.

For example, z = wx+ b can be represented by the following CG
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Computational graph of forward pass

Please plot the corresponding CG.

L =
1

2

(
σ(wx+ b)− t

)2
. (9)
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Computational graph of forward pass

(a) Multiplication (b) Logistic Regression (c) ReLU layer
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Computational graph of forward pass

Consider the following problem

z = wx+ b (10)

y = σ(z) (11)

L =
1

2
(y − t)2 (12)

R =
1

2
w2 (13)

Lreg = L+ λR (14)

Please plot its CG. Note that it involves two terms in the final loss.
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Computational graph of forward pass

Exercise 1: Please write the function according to this computational graph.
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Computational graph of multivariate function

Suppose we have a function f(h1, h2) and functions h1(x) and h2(x). (All
the variables here are scalar-valued.) Then

d

dx
f(h1(x), h2(x)) =

∂f

∂h1

dh1

dx
+

∂f

∂h2

dh2

dx

Example:

f(h1, h2) = h2 + eh1h2

h1(x) = cosx

h2(x) = x2

Plug in to Chain Rule:

df

dx
=

∂f

∂h1

dh1

dx
+

∂f

∂h2

dh2

dx

=
(
h2e

h1h2
)
· (− sinx) +

(
1 + h1e

h1h2
)
· 2x
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Computational graph of backward pass
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Forward and backward propagation
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Backpropagation

A single logistic neuron

z = fw(x) = xTw

y = f(z) =
1

1 + e−z

These give a real-valued output
that is a smooth and bounded func-
tion of their total input.
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Backpropagation

The derivatives of the logit, z,
with respect to the inputs and
the weights

z = xTw = b+
∑
i

wixi

∂z

∂wi
= xi

∂z

∂xi
= wi

The derivative of the output
y with respect to the logit in
terms of the output:

y = f(z) =
1

1 + e−z

∂y

∂z
= y(1− y)
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Backpropagation

Backpropagating ∂L
∂y through multiple layers

∂L

∂zj
=

dyj
dzj

∂L

∂yj
= yj (1− yj)

∂L

∂yj
∂L

∂yi
=

∑
j

dzj
dyi

∂L

∂zj
=

∑
j

wij
∂L

∂zj

∂L

∂wij
=

∂zj
∂wij

∂L

∂zj
= yi

∂L

∂zj
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Backpropagation

Backpropagating ∂L
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Backpropagation

Backpropagating ∂L
∂y through multiple layers
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∂L
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∂L
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Backpropagation

Backpropagating ∂L
∂y through multiple layers

∂L

∂zj
=

dyj
dzj

∂L

∂yj
= yj (1− yj)

∂L

∂yj
∂L

∂yi
=

∑
j

dzj
dyi

∂L

∂zj
=

∑
j

wij
∂L

∂zj

∂L

∂wij
=

∂zj
∂wij

∂L

∂zj
= yi

∂L

∂zj

Recall the gradient descent algorithm w← w − α∂J(w)
∂w
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Computational cost

The computa-
tional cost of
backward pass
is about two
times of that of
forward pass,
and is square
of the width
of each hidden
layer.

Basics: Aa×b·Bb×c takes O(a·b·c); d ad1×1

d bd2×1 takes O(d1·d2).
Forward pass (calculating activation of each layer):

y = g1(w
⊤h+ b), h = g2(Wx+ c)

where W ∈ Rm×d,x ∈ Rd×1,h,w ∈ Rm×1. The cost is

OF = O(md+m).

Note: here the costs of g1, g2 are ignored, as they are small
compared to the cost of their inside arguments.

Backward pass (calculating parameter derivative of each
layer): dL

dw = dL
dy ·

dy
dw , dL

dW = dL
dy ·

dy
dh ·

dh
dW .

The computational cost is:

OB = Ow(1 +m+m) +OW(m+m2d+m+m2d)=O(2(m2d+ 2m))

Note: The cost consists of both each derivative and the
product between derivatives.
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Summary

What you should know about neural networks:

Perceptron model: definition, property

Multi-layer feedforward neural network: definition, property

Backdpropagation: forward pass, back-ward pass

Computational graph (CG): transformation between network and CG,
using CG to run backpropagation
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Expressive power of deep linear networks

We’ve seen that there are some functions that linear classifiers can’t repre-
sent. Are deep networks any better?

Any sequence of linear layers can be equivalently represented with a single
layer.

y = W(2)W(2)W(1)︸ ︷︷ ︸
≜W′

x

Deep linear networks are not more expressive than linear regression.
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Expressive power of one non-linear hidden layer network

Multilayer feed-forward neural nets with nonlinear activation functions are
universal function approximators: they can approximate any function ar-
bitrary well [1].

This has been shown for various activation functions (thresholds, logistic,
ReLU, etc.)

Even though, ReLU is“almost” linear, it’s nonlinear enough.

Reference: K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward net-
works are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366,
1989.
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Why we need deep neural networks

Neural networks with one hidden layer is enough to represent (not learn)
an approximation of any function to an arbitrary degree of accuracy

So, why deep neural networks?

Shallow net may need (exponentially) more hidden neurons (i.e., very wide
hidden layer)
Shallow net may over-fit more

If you are interested in the details of above claims, please refer to the following
videos and blog:
Video 1: https://www.youtube.com/watch?v=KKT2VkTdFyc&list=PLJV_el3uVTsOh1F5eo9txATa4iww0Kp8K&
index=1

Video 2: https://www.youtube.com/watch?v=FN8jclCrqY0&list=PLJV_el3uVTsOh1F5eo9txATa4iww0Kp8K&
index=2

Blog: https://medium.com/@jacklindsai/why-is-deep-learning-deep-d4305e596b77
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Better Generalization with Greater Depth
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Motivation of convolutional neural networks (CNNs)

Although deeper neural networks have larger representation capability and
better generalization, it is difficult to extend the multi-layer feed-forward
neural networks to very deep, since every layer is fully connected.

For example, given a large image, the number of parameters could be very
large. How to alleviate such limitation?

People resort to two tricks:

Sparse connection
Shared parameters
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Sparse connection

Each input neuron only connects to partial output neurons

Each output neuron only connects to a few neighboring input neurons. And
the range of input neurons is called receptive field.
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Growing receptive field

Receptive field will increase along the layer goes deeper.

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning: Lecture 09 Neural NetworksOctober 24/26, 2023 51 / 53



Shared parameters

Parameters at different spatial locations are shared.

Consequently, as shown in the following example, the number of parameters
in the convolution filter is 3, while 5× 5 = 25 in the fully connected layer.
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Convolutional neural networks

In the next lecture, we will introduce more details about convolutional neural
networks (CNNs).
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