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Classification

Binary classification:

Given training data set D = {(xi, yi)}mi=1, and xi ∈ Rn, yi ∈ {−1,+1}
We adopt the sign hypothesis function y = Sgn(fw(x)) = Sgn(w⊤x)

Then, we require that

If yi = +1, then w⊤xi > 0
If yi = −1, then w⊤xi < 0
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Classification

There could be multiple decision boundaries to perfectly separate the above
data. Why?

For standard logistic regression, the objective function (i.e., cross entropy
loss) is convex, rather than strongly/strictly convex. Consequently, there
are multiple values of parameters that can perfectly fit the training data.

For regularized logistic regression, the objective function (i.e., cross entropy
loss + λ ·ℓ2 regularization) is strictly convex, which has the unique optimal
solution. However, it depends on the trade-off hyper-parameter λ. For
sure you can use cross-validation to use a suitable λ, but is there any more
elegant approach?
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Classification

Just following your intuition, which decision boundary do you prefer?

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning Lecture 07 Support Vector MachineOctober 10/12, 2023 6 / 69



Classification

Just following your intuition, which decision boundary do you prefer?

The middle one (i.e., w⊤
2 x = 0) seems better, as it is far from data of both

positive and negative classes.

How to model such intuition?
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Large margin intuition

We introduce the concept margin: the distance from the closest point of
positive and negative classes to the decision boundary

The intuition is to choose the decision boundary with large margin, which
is called large margin classifier, also called support vector machine (SVM)
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Mathematics behind large margin classification

Inner vector product:

µ =

[
µ1

µ2

]
, ν =

[
ν1
ν2

]
∥µ∥ =

√
µ2
1 + µ2

2, the length of µ

µ⊤ν = µ1ν1 + µ2ν2. How to represent it in the above plot? Note: µ⊤ν =
∥µ∥∥ν∥ cos θ
µ⊤ν = p · ∥µ∥, where p is the length of projection of ν on µ

Note that if the angle between µ and ν is larger than 90◦, then p < 0
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Mathematics behind large margin classification

Lemma 1: x has distance |fw(x)|
∥w∥ to the the hyperplane fw(x) = w⊤x = 0

Proof:

1 w is orthogonal to the hyperplane, as w⊤(x1 − x2) = 0 for any two points
x1,x2 at the hyperplane

2 The unit direction is w
∥w∥

3 The projection of x is
(

w
||w||

)⊤
x = fw(x)

∥w∥
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Mathematics behind large margin classification

Claim 1: w is orthogonal to the hyperplane fw,b(x) = w⊤x+ b = 0
Proof:

1 pick any x1 and x2 on the hyperplane

2 w⊤x1 + b = 0

3 w⊤x2 + b = 0

4 So w⊤ (x1 − x2) = 0
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Mathematics behind large margin classification

Claim 2: 0 has distance −b
∥w∥ to the hyperplane w⊤x+ b = 0

Proof:

1 pick any x1 on the hyperplane

2 Project x1 to the unit direction w
∥w∥ to get the distance

3

(
w

∥w∥

)⊤
x1 = −b

∥w∥ since w⊤x1 + b = 0

4 The projection length of x1 to w
∥w∥ is equivalent to the distance from 0 to

the hyperplane, i.e., −b
∥w∥
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Mathematics behind large margin classification

Lemma 2: x has distance
|fw,b(x)|

∥w∥ to the hyperplane fw,b(x) = w⊤x + b = 0

Proof:
1 Let x = x⊥ + r w

∥w∥ , then |r| is the distance

2 Multiply both sides by w⊤ and add b
3 Left hand side: w⊤x+ b = fw,b(x)

4 Right hand side: w⊤x⊥ + rw⊤w
∥w∥ + b = 0 + r∥w∥

5 Thus, fw,b(x) = r∥w∥. We obtain |r| = |fw,b(x)|
∥w∥ .

The notation here is: y(x) = fw,b(x) = w⊤x+ w0, b = w0.
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Mathematics behind large margin classification

Margin over all training data points:

γ = min
i

|fw,b (xi)|
∥w∥

Since only want correct fw,b, and recall yi ∈ {+1,−1}, we have

γ = min
i

yifw,b (xi)

∥w∥

If fw,b incorrect on some xi, the margin is negative
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Mathematics behind large margin classification

- Maximize margin over all training data points:

max
w,b

γ = max
w,b

min
i

yifw,b (xi)

∥w∥
= max

w,b
min
i

yi
(
w⊤xi + b

)
∥w∥

- A bit complicated ...
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Mathematics behind large margin classification

- Observation: when (w, b) scaled by a factor c, the margin unchanged

yi
(
cw⊤xi + cb

)
∥cw∥

=
yi
(
w⊤xi + b

)
∥w∥

- Let’s consider a fixed scale such that

yi∗
(
w⊤xi∗ + b

)
= 1

where xi∗ is the point closest to the hyperplane
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Mathematics behind large margin classification

- Let’s consider a fixed scale such that

yi∗
(
w⊤xi∗ + b

)
= 1

where xi∗ is the point closet to the hyperplane - Now we have for all data

yi
(
w⊤xi + b

)
≥ 1

and at least for one i the equality holds - Then the margin is 1
∥w∥
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Mathematics behind large margin classification

- Maximize margin over all training data points:

max
w,b

γ = max
w,b

min
i

yifw,b (xi)

∥w∥
= max

w,b
min
i

yi
(
w⊤xi + b

)
∥w∥

- Utilizing yi∗
(
w⊤xi∗ + b

)
= 1, the above optimization is simplified to

minw,b
1
2 ||w||2

subject to yi
(
w⊤xi + b

)
≥ 1,∀i

- Training/learning: solving the above optimization problem is called training
or learning of the large margin classifier, and we obtain the solution w∗, b∗

- Prediction: given the solution w∗, b∗, for a new test data xt, we predict it
as +1 if (w∗)⊤xt + b∗ > 0, otherwise −1.
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Alternative view of logistic regression

Hypothesis function:

fw,b(x) =
1

1 + exp(−w⊤x)
= g(z)

where z = w⊤x

If y = 1, we want fw,b(x) ≈ 1, i.e., w⊤x ≫ 0

If y = −1, we want fw,b(x) ≈ 0, i.e., w⊤x ≪ 0

Objective function of logistic regression

J(w) = −δy=1 log(fw,b(x))− δy=−1 log(1− fw,b(x)), (1)

where δa = 1 if a is true, otherwise 0.
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Objective of SVM

Objective function of regularized logistic regression

1

m

m∑
i

[
δyi=1

(
− log(fw,b(xi))

)
+ δyi=−1

(
− log(1− fw,b(xi))

)]
+

λ

2m

n∑
j=1

w2
j

Objective function of support vector machine

1

m

m∑
i

[
δyi=1cost1(w

⊤xi + b) + δyi=−1cost−1(w
⊤xi + b)

]
+

λ

2m

n∑
j=1

w2
j

≡C

m∑
i

[
δyi=1cost1(w

⊤xi + b) + δyi=−1cost−1(w
⊤xi + b)

]
+

1

2

n∑
j=1

w2
j ,

where C = 1
λ .
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Objective of SVM

Objective function of support vector machine

C

m∑
i

[
δyi=1cost1(w

⊤xi + b) + δyi=−1cost−1(w
⊤xi + b)

]
+

1

2

n∑
j=1

w2
j

If yi = +1, we require thatw⊤xi+b ≥ 1. In other words, cost1(w
⊤xi+b) =

0 if w⊤xi + b ≥ 1

If yi = −1, we require that w⊤xi+b ≤ −1. In other words, cost−1(w
⊤xi+

b) = 0 if w⊤xi + b ≤ −1

Hinge loss:

max
(
0, 1− yi(w

⊤xi + b)
)

(2)
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Mathematics behind large margin classification

However, hinge loss is non-smooth. We transform the objective function of
support vector machine to the following

min
w,b

1

2

n∑
j=1

w2
j (3)

s.t. w⊤xi + b ≥ 1, if yi = 1; w⊤xi + b < −1, if yi = −1.

It can be simplified as follows

min
w,b

1

2
∥w∥2 (4)

s.t. yi(w
⊤xi + b) ≥ 1,∀i
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Mathematics behind large margin classification

Utilizing pi =
w⊤xi+b

∥w∥ , which denotes the projection length of xi on w or

the distance from xi to the decision boundary w⊤x+ b = 0, we have

w⊤xi + b = pi · ∥w∥ (5)

The objective function of support vector machine is transformed to

min
w,b

1

2
∥w∥2 (6)

s.t. yi · pi · ∥w∥ ≥ 1,∀i

Let’s see the following two decision boundaries (plot below)
If the projection length pi is larger, then ∥w∥ could be smaller, leading to
better solution. Thus, we prefer large margin.
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Lagrange duality

Given a general minimization problem

min
x∈Rn

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m
ℓj(x) = 0, j = 1, . . . , r

Note that here x denotes the argument we aim to optimize, rather than a
data point.
The Lagrangian function:

L(x,u,v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vjℓj(x)

The Lagrange dual function:

g(u,v) = min
x∈Rn

L(x,u,v)

The dual problem:
max

u∈Rm,v∈Rr
g(u,v)

subject to u ≥ 0
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KKT conditions

Given general problem

min
x∈Rn

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m
ℓj(x) = 0, j = 1, . . . , r

The Karush-Kuhn-Tucker conditions or KKT conditions are:

0 ∈ ∂f(x) +

m∑
i=1

ui∂hi(x) +

r∑
j=1

vj∂ℓj(x) (stationarity)

ui · hi(x) = 0 for all i (complementary slackness)
hi(x) ≤ 0, ℓj(x) = 0 for all i, j (primal feasibility)
ui ≥ 0 for all i (dual feasibility)

Reference: S. Boyd and L. Vandenberghe (2004), Convex Optimization, Cam-
bridge University Press, Chapter 5.
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Optimization of SVM

The objective function of support vector machine is

min
w,b

1

2
∥w∥2 (7)

s.t. yi(w
⊤xi + b) ≥ 1,∀i

It can be transformed to

min
w,b

1

2
∥w∥2 (8)

s.t. 1− yi(w
⊤xi + b) ≤ 0,∀i

Its Lagrange function is

L(w, b,α) =
1

2
∥w∥2 +

m∑
i

αi

(
1− yi(w

⊤xi + b)
)
,
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Optimization of SVM

Lagrange function:

L(w, b,α) =
1

2
∥w∥2 +

m∑
i

αi

(
1− yi(w

⊤xi + b)
)
,

The primal and dual optimal solutions should satisfy KKT conditions:
Stationarity:

∂L

∂w
= 0 ⇒ w =

m∑
i

αiyixi (9)

∂L

∂b
= 0 ⇒

m∑
i

αiyi = 0 (10)

Feasibility:

αi ≥ 0, 1− yi(w
⊤xi + b) ≤ 0, ∀i (11)

Complementary slackness:

αi

(
1− yi(w

⊤xi + b)
)
= 0, ∀i (12)
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Optimization of SVM

Lagrange function:

L(w, b,α) =
1

2
∥w∥2 +

m∑
i

αi

(
1− yi(w

⊤xi + b)
)
,

Replacing the stationary condition into Lagrange function, we have

L(w, b,α) (13)

=
1

2
∥w∥2 +

m∑
i

αi −
m∑
i

αiyi
( m∑

j

αjyjxj

)⊤
xi −

m∑
i

αiyib (14)

=
1

2
∥w∥2 +

m∑
i

αi −
m∑
i,j

αiαjyiyjx
⊤
i xj − b

m∑
i

αiyi (15)

=

m∑
i

αi −
1

2
∥w∥2 (16)

=

m∑
i

αi −
1

2

m∑
i,j

αiαjyiyjx
⊤
i xj (17)
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Optimization of SVM

Then, we obtain the following dual problem:

max
α

m∑
i

αi −
1

2

m∑
i,j

αiαjyiyjx
⊤
i xj , (18)

s.t.

m∑
i

αiyi = 0, αi ≥ 0, ∀i (19)

It can be solved by any off-the-shelf optimization solver.

Then, we replace the solved α back into the stationary condition, thus we
obtain the primal solution w,

w =

m∑
i

αiyixi (20)
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Optimization of SVM

Solution interpretation:

The primal solution w and the dual solution α should also satisfy other
KKT conditions

Feasibility: αi ≥ 0, 1− yi(w
⊤xi + b) ≤ 0, ∀i

Complementary slackness: αi

(
1− yi(w

⊤xi + b)
)
= 0, ∀i

When comparing above conditions together, we have that for xi, ∀i,
If it satisfies 1− yi(w

⊤xi + b) < 0, then αi = 0;
If it satisfies 1− yi(w

⊤xi + b) = 0, then αi ≥ 0.

If αi = 0, then it means that xi doesn’t contribute to w, i.e., the SVM
classifier

The data points with αi > 0 construct the classifier, and they are called
support vectors, which locate at the hyperplanes yi(w

⊤xi + b) = 1. And,
we define the support set as S = {i|αi > 0} This is why we call it support
vector machine.

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning Lecture 07 Support Vector MachineOctober 10/12, 2023 37 / 69



Optimization of SVM

The remaining issue is how to determine the bias parameter b?

For any support vector xj , j ∈ S, we have

yj(w
⊤xj + b) = 1, ∀j ∈ S (21)

⇒ yj(

m∑
i

αiyix
⊤
i xj + b) = 1, ∀j ∈ S (22)

Product yj for both sides of the above equation, and utilizing yj · yj = 1,
we have

m∑
i

αiyix
⊤
i xj + b = yj , ∀j ∈ S (23)

⇒ b =
1

|S|
∑
j∈S

(
yj −

m∑
i

αiyix
⊤
i xj

)
(24)
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Prediction using SVM

Prediction:

Given the optimized parameters {α,w, b}, given a new data x, its predic-
tion is

w⊤x+ b =

m∑
i

αiyix
⊤
i x+

1

|S|
∑
j∈S

(
yj −

m∑
i

αiyix
⊤
i xj

)
(25)

If w⊤x+ b > 0, then the predicted class of x is +1, otherwise −1

If and only if y(w⊤x+ b) > 0, then your prediction is correct

Note that the prediction of new data depends on inner product with existing
training data, which is important to derive kernel SVM later
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SVM with slack variables

In above derivation, we assume that all primal constraints yi(w
⊤xi + b) ≥

1,∀i can be satisfied, implying that the training data is separable.

However, sometimes samples of different classes are overlapped (i.e., non-
separable), as shown below.

Consequently, some constraints will be violated, and we can not obtain the
feasible solution.
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SVM with slack variables

To handle such data, we introduce slack variable ξi ≥ 0

We allow some errors for training data, i.e., yi(w
⊤xi+b) ≥ 1−ξi,∀i, rather

than yi(w
⊤xi + b) ≥ 1,∀i

But we hope that such errors ξi,∀i are small

Please plot the corresponding hinge loss with slack variables
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SVM with slack variables

In this case, the SVM is formulated as follows

min
w,b,ξ

1

2
∥w∥2 + C

m∑
i

ξi (26)

s.t. 1−ξi − yi(w
⊤xi + b) ≤ 0,−ξi ≤ 0, ∀i

Its Lagrange function is

L(w, b, , ξ,α,µ) =
1

2
∥w∥2 + C

m∑
i

ξi +

m∑
i

[
αi

(
1−ξi − yi(w

⊤xi + b)
)
+ µi(−ξi)

]
,

and αi, µi ≥ 0,∀i.
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SVM with slack variables

Lagrange function:

L(w, b, , ξ,α,µ) =
1

2
∥w∥2 + C

m∑
i

ξi +

m∑
i

[
αi

(
1−ξi − yi(w

⊤xi + b)
)
+ µi(−ξi)

]
,

The primal and dual optimal solutions should satisfy KKT conditions:
Stationarity:

∂L
∂w

= 0 ⇒ w =

m∑
i

αiyixi (27)

∂L
∂b

= 0 ⇒
m∑
i

αiyi = 0 (28)

∂L
∂ξi

= 0 ⇒ αi = C − µi, ∀i (29)

Feasibility:

αi ≥ 0, 1−ξi − yi(w
⊤xi + b) ≤ 0, ξi ≥ 0, µi ≥ 0, ∀i (30)

Complementary slackness:

αi

(
1−ξi − yi(w

⊤xi + b)
)
= 0, µiξi = 0, ∀i (31)
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SVM with slack variables

Lagrange function:

L(w, b, ξ,α,µ) =
1

2
∥w∥2 + C

m∑
i

ξi +

m∑
i

[
αi

(
1−ξi − yi(w

⊤xi + b)
)
+ µi(−ξi)

]
.

Replacing all stationary conditions into Lagrange function to eliminate pri-
mal variables, we have

L(α,µ) =
1

2
∥w∥2 +

m∑
i

[
αi

(
1− yi(w

⊤xi + b)
)]

+

m∑
i

(C − αi − µi)ξi (32)

=

m∑
i

αi −
1

2

∑
i,j

αiαjyiyjx
⊤
i xj .
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SVM with slack variables

Then, we obtain the following dual problem:

max
α,µ

m∑
i

αi −
1

2

∑
i,j

αiαjyiyjx
⊤
i xj , (33)

s.t.

m∑
i

αiyi = 0, 0 ≤ αi ≤ C, µi ≥ 0, αi = C − µi, ∀i (34)

Utilizing αi = C − µi, we obtain a simpler dual problem:

max
α

m∑
i

αi −
1

2

∑
i,j

αiαjyiyjx
⊤
i xj , (35)

s.t.

m∑
i

αiyi = 0, 0 ≤ αi ≤ C, ∀i (36)

Note that the only change in dual problem is the constraint 0 ≤ αi ≤ C,
which is αi ≥ 0 in the dual problem of standard SVM.

Reference: https://nianlonggu.com/2019/06/07/tutorial-on-SVM/
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SVM with slack variables

Solution interpretation

The solution αi has three cases: αi = 0, 0 < αi < C,αi = C
αi = 0: the corresponding data are correctly classified and doesn’t con-
tribute to the classifier, locating outside of the margin
0 < αi < C: in this case, µi > 0 due to αi = C − µi; Since µiξi = 0,
then we have ξi = 0. The corresponding data are correctly classified and
contributes to the classifier, locating on the margin
αi = C: in this case, µi = 0; then we have ξi > 0. The corresponding data
contributes to the classifier, locating inside the margin

If ξi ≤ 1, then the data is still correctly classified, not crossing decision
boundary
If ξi > 1, then the data is incorrectly classified, crossing decision boundary
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SVM with slack variables

How to determine the bias parameter b?

We define M = {i|0 < αi < C}
Since 0 < αi < C, we have ξi = 0

Then, for any support vector xj , j ∈ M, we have

yj(w
⊤xj + b) = 1, ∀j ∈ M (37)

⇒ yj(

m∑
i

αiyix
⊤
i xj + b) = 1, ∀j ∈ M (38)

Utilizing yj · yj = 1, we have

m∑
i

αiyix
⊤
i xj + b = yj , ∀j ∈ M (39)

⇒ b =
1

|M|
∑
j∈M

(
yj −

m∑
i

αiyix
⊤
i xj

)
(40)

Note that using the average of all support vectors, rather than one single
support vector, could make the solution of b more numerically stable.
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Optimization of SVM

Why do we prefer to optimize the dual problem, rather than directly optimizing
the primal problem? There are two main advantages:

By examining the dual form of the optimization problem, we gained signif-
icant insight into the structure of the problem

The entire algorithm can be written in terms of only inner products between
input feature vectors. In the following, we will exploit this property to apply
the kernels to classification problem. The resulting algorithm, support
vector machines, will be able to efficiently learn in very high dimensional
spaces.

Reference:
https://stats.stackexchange.com/questions/19181/why-bother-with-the-dual-problem-when-fitting-svm
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Kernels

In above derivation, SVM can only handle linearly separable data.

For non-linearly separable data (e.g., XOR data, and the following data),
how to use SVM?

Recall that the polynomial regression can handle non-linearly separable
data
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SVM with polynomial hypothesis function

Predict y = 1 if

w0 + w1x1 + w2x2 + w3x1x2

+w4x
2
1 + w5x

2
2 + · · · ≥ 0

As introduced before, one can choose high-order polynomial hypothesis
function to handle non-linear separable data,

fw,b(x) = w⊤[1;x1;x2;x1x2;x
2
1;x

2
2; · · · ] (41)

However, in many real problems, such as image classification, the dimen-
sionality of original features |x| is already very high. Consequently, the
dimensionality of high-order polynomial function will be too high, causing
high computational cost or overfitting
To tackle this difficulty, we will introduce kernel.
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Kernels

Given a new data x, compute its new features based on proximity o land-
marks l(1), l(2), l(3) (plot above), and here we use the Gaussian kernel, as
follows

f1 = similarity(x, l(1)) = exp(−∥x− l(1)∥2

2σ2
) (42)

f2 = similarity(x, l(2)) = exp(−∥x− l(2)∥2

2σ2
) (43)

f3 = similarity(x, l(3)) = exp(−∥x− l(3)∥2

2σ2
) (44)

Then, we have a new representation [f1; f2; f3] for the data x
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Kernels

Kernel and similarity

f1 = similarity(x, l(1)) = exp(−∥x− l(1)∥2

2σ2
) (45)

If x ≈ l(1), then f1 ≈ 1

If x is far from l(1), then f1 ≈ 0
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Kernels
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Kernels

Given x :

fi = similarity
(
x, l(i)

)
= exp

(
−
∥∥x− l(i)

∥∥2
2σ2

)

How to obtain the landmark points?
We can set all training data points as landmarks.
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SVM with Kernels

We firstly define the following kernel

k(xi,xj) = ϕ(xi)
⊤ϕ(xj) (46)

Utilizing this kernel to replacing x⊤
i xj , we have the following dual problem

max
α

m∑
i

αi −
1

2

∑
i,j

αiαjyiyjk(xi,xj), (47)

s.t.

m∑
i

αiyi = 0, αi ≥ 0, ∀i (48)

The solution of b becomes

b =
1

|S|
∑
j∈S

(
yj −

m∑
i

αiyik(xi,xj)
)

(49)

The prediction of new data x becomes

w⊤x+ b =

m∑
i

αiyik(xi,x) + b (50)

Since α is sparse, the above classifier is also called sparse kernel classifier.
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SVM with Kernels

Widely used kernels:

Polynomial kernel: k(x,xi) =

(
1 +

x⊤xi

σ2

)p

, p > 0 (51)

Radial Basis Function (RBF) kernel: k(x,xi) = exp

{
−∥x− xi∥2

2σ2

}
(52)

Sigmoidal kernel: k(x,xi) =
1

1 + exp−
x⊤xi+b

σ2

(53)
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SVM with Kernels
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SVM with Kernels

Figure: Decision boundaries produced by SVM with a 2nd-order polynomial kernel
(top-left), a 3rd-order polynomial kernel (top-right), and a RBF kernel (bottom).

top-left-right?
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Multi-class SVM

SVM is good for binary classification:
f(x) > 0 ⇒ x ∈ Class 1; f(x) ≤ 0 ⇒ x ∈ Class 2

To classify multiple classes, we use the one-vs-rest approach to convert K
binary classifications to a K-class classification:
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Multi-class SVM

y ∈ {1, 2, 3, . . . ,K}

Many SVM packages already have built-in multi-class classification func-
tionality.

Otherwise, use one-vs.-all method. (Train K SVMs, one to distinguish
y = k from the rest, for k = 1, 2, . . . ,K), get (w(1), b(1)), . . . , (w(K), b(K)).

Predict the label of x as

argmax
k∈{1,2,...,K}

(
w(k)

)⊤
x+ b(k)
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SVM vs. Logistic regression

SVM : Hinge loss
loss (f (xi) , yi) =

(
1−

(
w⊤xi + b

)
yi
))

+

Logistic Regression : Log loss ( - log conditional likelihood)

loss (f (xi) , yi) = − logP (yi | xi,w, b) = log
(
1 + e−(w

⊤xi+b)yi

)
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SVM vs. Logistic regression

Logistic regression (LR) vs. SVM

n = |x| indicates the number of features, and m = |Dtrain| is the number
of training data

If n is large (relative to m), then the data is linearly separable, one can use
LR or SVM without kernel

If n is small, and m is intermediate, then the data may be non-linearly
separable, one use SVM with Gaussian kernel

If n is small, and m is large, then create/add more features to make the
data more separable, and one can use LR or SVM without kernel. Why
not choose SVM with kernel in this case?
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Software of SVM
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Using SVM in practice

You are not required to implement SVM by yourself, and there are many
well implemented sortwares, such as libsvm.

When you choose a software to learn a SVM model, you need to specify:

Choice of parameter C (i.e., the tradeoff hyper-parameter of the slack vari-
ables)
Choice of kernel

Linear kernel
Gaussian kernel, but you should set the kernel size (i.e., variance of Gaussian
distribution). Note that do perform feature scaling before using the Gaussian
kernel.
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Reading material

References:

Andrew Ng’s note on SVM:
https://see.stanford.edu/materials/aimlcs229/cs229-notes3.pdf

Chapter 7.1 of Bishop’s book

KKT conditions:
https://www.stat.cmu.edu/~ryantibs/convexopt-S15/scribes/12-kkt-scribed.

pdf

More variants of SVM:

Semi-supervised SVM

Structured SVM

SVM with latent variables

SVM for regression
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Summary of SVM

What you need to know:

Lagrange duality and KKT conditions

Support vector machine:

Derivation of large margin
Derivation of hingle loss
Optimization using dual problem and KKT conditions
SVM with slack variables
SVM with kernels
Relationship between SVM and logistic regression
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