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Notations

A set is an unordered collection of unique elements.

We denote a set as a calligraphic capital character, for example, S.

A set of numbers can be finite (include a fixed amount of values). In
this case, it is denoted using accolades, for example, {1, 3, 18, 23, 235} or
{x1, x2, x3, ..., xd}.
A set can also be infinite.
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Notations

A set can be infinite and include all values in some interval.

If a set includes all values between a and b, including a and b, it is denoted
using brackets as [a, b].

If the set does not include the values a and b, such a set is denoted using
parentheses like this: (a, b).

For example, the set [0, 1] includes such values as 0, 0.0001, 0.25, 0.784,
0.9995, and 1.0.

A special set denoted R (or R, R ) includes all real numbers from minus
infinity to plus infinity.
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Notations

Intersection of two sets:
S3 ← S1 ∩ S2
Example: {1, 3, 5, 8} ∩ {1, 8, 4} = {1, 8}

Union of two sets:
S3 ← S1 ∪ S2
Example: {1, 3, 5, 8} ∪ {1, 8, 4} =
{1, 3, 4, 5, 8}
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Functions, derivative and gradient

A function is a relation that associates each element x of a set X , the do-
main of the function, to a single element y of another set Y, the codomain
of the function.

A function usually has a name. If the function is called f , this relation is
denoted y = f(x) (read f of x), the element x is the argument or input of
the function, and y is the value of the function or the output.

The symbol that is used for representing the input is the variable of the
function (we often say that f is a function of the variable x).
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Functions, derivative and gradient

A scalar function can also have vector argument such as, y = f(x), or a
scalar argument (y = f(x)).

A vector function, denoted as y = f(x), is a function that returns y,
which can have either a vector argument (y = f(x)) or a scalar argument
(y = f(x)).
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Functions, derivative and gradient

Notation

The notation f : Rd → R means that f is a function that maps real d-
vectors to real numbers, i.e., it is a scalar-valued function of d dimension
vectors.

If x is a d-vector, then f(x), which is a scalar, denotes the value of the
function f at x. In the notation f(x), x is referred to as the argument of
the function

f(x) = f(x1, x2, . . . , xd)
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Functions, derivative and gradient

Linear and Affine functions

To describe a function f : Rd → R we have to specify what its value is for
any possible argument x ∈ Rd.

For example, we can define a function f : R4 → R by

f(x) = x1 + x2 − 2x3 − x4
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Functions, derivative and gradient

Linear and Affine functions
Another example: The inner product function

Suppose there is a d-vector. We can define a scalar valued function f of
d-vectors, given by

f(x) = a⊤x = a1x1 + a2x2 + . . .+ adxd

for any d-vector x.

This function gives the inner product of its d-vector argument x with some
(fixed) d-vector a.

We can also think of f as forming a weighted sum of the elements of x; the
elements of a give the weights used in forming the weighted sum.
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Functions, derivative and gradient

Linear and Affine functions

A function f : Rd → R is linear if it satisfies the following two properties:

Homogeneity: For any d-vector x and a scalar α, f(αx) = αf(x).
Additivity: For any d-vectors x and y, f(x+ y) = f(x) + f(y)

f(x) = a⊤x = a1x1 + a2x2 + . . .+ adxd

for any d-vector x.

Homogeneity states that scaling the (vector) argument is the same as
scaling the function value.

Additivity says that adding (vector) arguments is the same as adding the
function values.
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Functions, derivative and gradient

Linear and Affine functions
Superposition and linearity

The inner product function f defined before satisfies the linearity property

f(αx+ βy) = a⊤(αx+ βy)

= a⊤(αx) + a⊤(βy)

= α(a⊤x) + β(a⊤y)

= αf(x) + βf(y)

for all d-vectors x,y, and all scalars α, β.

This property is called superposition (which consists of homogeneity and
additivity).

A function that satisfies the superposition property is called linear
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Functions, derivative and gradient

Linear and Affine functions

If a function f is linear, superposition extends to linear combinations of
any number of vectors:

f(α1x1 + . . .+ αkxk) = α1f(x1) + . . .+ αkf(xk)

for any d-vectors x1, ..., xk and any scalars α1,...,αk
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Functions, derivative and gradient

Linear and Affine functions
A function f : Rd → R is affine if and only if it can be expressed as f(x) =
a⊤x+ b for some d-vector a and a scalar b, which is sometimes called the offset.

Example:

f(x) = 2.3− 2x1 + 1.3x2 − x3

is affine, with b = 2.3, a =

−21.3
−1

.
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Functions, derivative and gradient
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Functions, derivative and gradient

We say that f(x) has a local minimum at x = c if f(x) ≥ f(c) for every
x in some open interval around x = c.

An interval is a set of real numbers with the property that any number
that lies between two numbers in the set is also included in the set.

An open interval does not include its endpoints and is denoted using
parentheses. For example, (0, 1) means “all numbers greater than 0 and
less than 1”

The minimal value among all the local minima is called the global min-
ima. See illustration in the Figure in next page.
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Functions, derivative and gradient

Figure: Local and global minima of a function. a < x < b
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Functions, derivative and gradient

max vs argmax

Given a set of valuesA = {a1, a2, ..., am}, the operator maxa∈A f(a) returns
the highest value f(a) for all elements in the set A.
On the other hand, the operator argmaxa∈A f(a) returns the element of
the set A that maximizes f(a).

Sometimes, when the set is implicit or explicit, we can write

max
a

f(a) or argmax
a

f(a)

Operator min and argmin operates in a similar manner.

Note: arg max returns a value from the domain of the function andmax re-
turns from the range (codomain) of the function
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Functions, derivative and gradient

Derivative and Gradient

A derivative f ′ of a function f is a function or a value that describes how
fast f grows (or decreases).

If the derivative is a constant value, like 5 or −3, then the function grows
(or decreases) constantly at any point x of its domain.

If the derivative f ′ is positive at some point x, then the function f grows
at this point.

If the derivative f ′ is negative at some point x, then the function f decreases
at this point.

The derivative of zero at x means that the function’s slope at x is
horizontal.
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Functions, derivative and gradient

Partial Derivative

Differentiation of a scalar function w.r.t. a vector

If f(w) is a scalar function of d variables, w is a d× 1 vector, then differ-
entiation of f(w) w.r.t. w results in a d× 1 vector.

df(w)

dw
=


∂f
∂w1

...
∂f
∂wd


This is referred to as the gradient of f(w) and written as ∇wf .
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Functions, derivative and gradient

Partial Derivative

Differentiation of a vector function w.r.t. a vector

If f(w) is a vector function of size h × 1 and w is a d × 1 vector, then
differentiation of f(w) w.r.t. w results in a d× h vector.

df(w)

dw
=


∂f1
∂w1

. . . ∂fh
∂w1

...
. . .

...
∂f1
∂wd

. . . ∂fh
∂wd


This is referred to as the Jacobian matrix of f(w), i.e.,

J =
df(w)

dw
,

Jij =
∂fj
∂wi

.
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Functions, derivative and gradient

Some Vector-Matrix Differentiation Formulations

d(X⊤w)

dw
= X,where X is not a function of w

d(y⊤Xw)

dw
= X⊤y

d(w⊤Xw)

dw
= (X+X⊤)w

Note that we adopt the denominator layout derivative. If you use the
numerator layout derivative, then all above results will be transposed.

Both types are OK, but keep it consistent in all derivatives.

Please refer to the following wiki page for more details:
https://en.wikipedia.org/wiki/Matrix_calculus
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Linear regression

Dataset:

We have a collection of m labeled examples {(xi, yi)}mi=1, with xi ∈ X being
the d-dimensional feature vector of the i-th example, and yi ∈ Y being a
real-valued target.

Linear hypothesis function:

We want to build a linear model fw,b(x), i.e., linear hypothesis function,

fw,b(x) = x⊤w + b,

where w is a d-dimensional vector of parameters, and the bias parameter
b is a real number.

Note: fw,b is called linear due to the linearity w.r.t. the parameter vector
[b;w], rather than w.r.t. the feature vector x.

Task of linear regression:

Using the linear model fw,b to approximate the ground-truth target func-
tion t : X → Y.
Note: If Y is a finite and discrete set, then the task corresponds to a
classification problem; if Y is a continuous space, then the task corre-
sponds to a regression problem.
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Linear regression: deterministic perspective

Learning objective function

To find the optimal values for w∗ and b∗ which minimizes the following
expression:

1

m

m∑
i=1

(fw,b (xi)− yi)
2

In mathematics, the expression we minimize or maximize is called an ob-
jective function, or, simply, an objective.
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Linear regression: deterministic perspective

The expression (fw,b (xi)− yi)
2
in the above objective is called the loss

function. It’s a measure of penalty for mis-classification of example i.

This particular choice of the loss function is called squared error loss.

All model-based learning algorithms have a loss function and what we do
to find the best model is we try to minimize the objective known as the
cost function.

In linear regression, the cost function is given by the average loss, also
called the empirical risk.
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Linear regression: probabilistic perspective

We assume that the relationship between the input variable/feature x and
the output variable y is

y = w⊤x+ e, where e ∼ N (0, σ2), (1)

where e is called observation noise or residual error, and it is independent
with any specific input x.

Thus, the output y can also be seen as a random variable, and its condi-
tional probability is formulated as

p(y|x,w) = N (w⊤x, σ2) (2)
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Linear regression: probabilistic perspective

Maximum log-likelihood estimation:

The parameter w can be learned by maximum log-likelihood estimation
(MLE), given the training dataset D = {(xi, yi)}mi=1, as follows

wMLE = argmax
w

logL(w;D), (3)

logL(w;D) = log
( m∏
i=1

p(yi|xi,w)
)
=

m∑
i=1

logN (w⊤xi, σ
2) (4)

= −m log(σ(2π)
1
2 )− 1

2σ2

m∑
i=1

(yi −w⊤xi)
2.

Removing the constants w.r.t. w,

wMLE = argmin
w

1

2

m∑
i=1

(yi −w⊤xi)
2, (5)

which is exactly the same with the cost function from the deterministic
perspective.
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Linear regression with analytical solution

Learning (Training)

Consider the set of feature vector xi and target output yi indexed by
i = 1, . . . ,m, then a linear model fw,b(x) = x⊤w + b can be packed as

fw,b(X) ⇔ y =

 y1
...
ym


Learning model Learning target vector

=

 x⊤
1 w
...

x⊤
mw



where x⊤
i w = [1, x1, . . . , xd]i


b
w1

...
wd


Note: The bias term is responsible for shifting the line/plane up or
down.
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Linear Regression

Least Squares Regression

In vector-matrix notation, the squared error loss function can be written
compactly using e = Xw − y :

J(w) = e⊤e

= (Xw − y)⊤(Xw − y)

=
(
w⊤X⊤ − y⊤) (Xw − y)

= w⊤X⊤Xw−w⊤X⊤y − y⊤Xw + y⊤y

= w⊤X⊤Xw−2y⊤Xw + y⊤y

Note: when fw,b(X) = Xw , then

m∑
i=1

(fw,b (xi)− yi)
2
= (Xw − y)⊤(Xw − y).
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Linear Regression

Differentiating J(w) with respect to w and setting the result to 0 :

∂

∂w
J(w) = 0

∂

∂w

(
w⊤X⊤Xw − 2y⊤Xw + y⊤y

)
= 0

⇒ 2X⊤Xw − 2X⊤y = 0

⇒ 2X⊤Xw = 2X⊤y

If X⊤X is invertible, then

Learning: ŵ =
(
X⊤X

)−1
X⊤y

Prediction: fw,b (Xnew ) = Xnew ŵ
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Linear Regression
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Linear regression

ŷ = Xŵ

= X

[
−1.4375
0.5625

]
y = −1.4375 + 0.5625x

Prediction:

{x = −1} → {y =?}

ŷ = [1− 1]

[
−1.4375
0.5625

]
= −2

Linear Regression for one-dimensional examples.
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Linear Regression
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Linear Regression

Prediction:
{x1 = 1, x2 = 6, x3 = 8} → {y =?}
{x1 = 1, x2 = 0, x3 = −1} → {y =?}

ŷ =

[
1 6 8
1 0 −1

] −0.750.18
0.93


=

[
7.7500
−1.6786

]
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Linear regression solved by gradient descent

The linear regression is formulated to the following optimization problem

w̄∗ = argmin
w̄

J(w̄), J(w̄) =
1

2

m∑
i=1

(x⊤
i w + b− yi)

2 =
1

2
(Xw̄ − y)2, (6)

where X = [(1,x⊤
1 ); · · · ; (1,x⊤

m)] ∈ Rm×(d+1), and w̄ = [b;w] ∈ R(d+1)×1.
Note: for clarity, we will also use w to represent w̄, when b is not explicitly
written.

w can be updated by gradient descent algorithm,

w← w − α
∂J(w)

∂w
,
∂J(w)

∂w
= X⊤(Xw − y) (7)

where α is called step-size or learning rate.

Does gradient descent always converge to the optimal solution? (Plot the
update trajectory of gradient descent on loss curve)

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning Lecture 05 Linear RegressionSeptember 19/21, 2023 39 / 80



Closed-form solution vs. gradient descent

Closed-form solution Gradient descent
w̄ = (X⊤X)−1X⊤y w̄← w̄ − αX⊤(Xw̄ − y)
No hyper-parameter Needs to choose α
No need to iterate Needs many iterations
Complexity O(d3 +md2) Complexity O(T ×md2)
Slow if d is very large Works well when d is large

Thus, you can choose between above two solutions according to the dimension-
ality of your training data:

When the training data is very high-dimensional, i.e., d is very large, then
it is better to choose gradient descent algorithm

When the training data is not high-dimensional, i.e., d is very small, then
it is better to choose closed-form solution
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Linear regression with single output

When considering the entire set of data indexed by i = 1, . . . ,m, a linear model
fw,b(x) = x⊤w + b can be packed as

fw,b(X) = Xw← Scalar function

=

 x⊤
1 w
...

x⊤
mw

 where x⊤
i w = [1, xi,1, . . . , xi,d]


b
w1

...
wd

 (8)

Primal solution: ŵ =
(
X⊤X

)−1
X⊤y

Note: The bias term is responsible for shifting the line/plane up or down.

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning Lecture 05 Linear RegressionSeptember 19/21, 2023 42 / 80



Linear regression with multiple outputs

When considering the entire set of data indexed by i = 1, . . . ,m, a linear
model fw,b(x) = x⊤W + b⊤ can be packed as

fw,b(X) = XW
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Linear regression with multiple outputs

In matrix-matrix notation, the squared error loss function can be written com-
pactly using E = XW −Y :

J(W) = trace
(
E⊤E

)
= trace

[
(XW −Y)⊤(XW −Y)

]
If X⊤X is invertible, then

Learning: Ŵ =
(
X⊤X

)−1
X⊤Y

Prediction: fw,b (Xnew ) = Xnew Ŵ

Assumption: the error terms e⊤k ek are independent for all k = 1, . . . , h
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Linear regression with multiple outputs
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Linear regression

Example

{xi,yi}mi=1 {x1 = 1, x2 = 1, x3 = 1} → {y1 = 1, y2 = 0}
{x1 = 1, x2 = −1, x3 = 1} → {y1 = 0, y2 = 1}
{x1 = 1, x2 = 1, x3 = 3} → {y1 = 2, y2 = −1}
{x1 = 1, x2 = 1, x3 = 0} → {y1 = −1, y2 = 3}
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Linear regression with multiple outputs

Example:

Prediction:

{x1 = 1, x2 = 6, x3 = 8} → {y1 =?, y2 =?}
{x1 = 1, x2 = 0, x3 = −1} → {y1 =?, y2 =?}

Ŷ = XtŴ

=

[
1 6 8
1 0 −1

] −0.75 2.25
0.1786 0.0357
0.9286 −1.2143


=

[
7.75 −7.25
−1.6786 3.4643

]
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Linear regression for classification

Dataset:

We have a collection of m labeled examples {(xi, yi)}mi=1, with xi ∈ X being
the d-dimensional feature vector of the i-th example, and yi ∈ Y being a
real-valued target.

Linear hypothesis function:

We want to build a linear model fw,b(x), i.e., linear hypothesis function,

fw,b(x) = x⊤w + b,

where w is a d-dimensional vector of parameters, and the bias parameter
b is a real number.

Note: fw,b is called linear due to the linearity w.r.t. the parameter vector
[b;w], rather than w.r.t. the feature vector x.

Task of linear regression:

Using the linear model fw,b to approximate the ground-truth target func-
tion t : X → Y.
Note: If Y is a finite and discrete set, then the task corresponds to a
classification problem; if Y is a continuous space, then the task corre-
sponds to a regression problem.
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Linear regression for classification

Binary Classification: If X⊤X is invertible, then

Learning: ŵ =
(
X⊤X

)−1
X⊤y, yi ∈ {−1,+1}, i = 1, . . . ,m

Prediction: fw,b (xnew) = sgn
(
x⊤
newŵ

)
( for each row x⊤

new of Xnew)
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Linear regression for classification
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Linear regression for classification

ŷ = sgn(Xŵ)

= sgn

(
X

[
0.1406
0.1406

])
y = 0.1406 + 0.1406x

Prediction:

{x = −2} → {y =?}

ŷ = sgn ([1− 2]

[
0.1406
0.1406

]
)

= sgn(−0.1406) = −1

Linear regression for one-dimensional classification.
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Linear regression for classification

Linear Methods for Multi-Category Classification:

If X⊤X is invertible, then

Learning: Ŵ =
(
X⊤X

)−1
X⊤Y, Y ∈ Rm×C

Prediction: fw,b (xnew) = argmaxi=1,...,C(x
⊤
new Ŵ)(for each row x⊤

new of Xnew )

Each row (of i=1, . . . , m) in Y has a one-hot assignment:

e.g., target for class-1 is labelled as y⊤
i = [1, 0, 0, . . . , 0] for the i th sample,

target for class-2 is labelled as y⊤
i = [0, 1, 0, . . . , 0] for the i th sample,

target for class-C is labelled as y⊤
i = [0, 0, . . . , 0, 1] for the i th sample.

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning Lecture 05 Linear RegressionSeptember 19/21, 2023 53 / 80



Linear regression for classification
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Linear regression for classification

Example

Prediction:

{x1 = 1, x2 = 6, x3 = 8} → { class 1, 2, or 3 ? }
{x1 = 1, x2 = 0, x3 = −1} → { class 1, 2, or 3 ? }

Ŷ = XtŴ = arg max
i=1,...,C

[
1 6 8
1 0 −1

] 0 0.5 0.5
0.2857 −0.5 0.2143
0.2857 0 −0.2857


= arg max

i=1,...,C

([
4 −2.50 −0.50

−0.2587 0.50 0.7857

]) Position of the largest
number determines
the class label

=

[
1
3

]→Class-1

→ Class-3
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1 Notations, vectors, matrices

2 Functions, derivative and gradient

3 Modeling of linear regression
Deterministic perspective
Probabilistic perspective

4 Learning of linear regression
Analytical solution
Gradient descent algorithm

5 Linear regression of multiple outputs

6 Linear regression for classification

7 Variants of linear regression
Ridge regression
Polynomial regression
Lasso regression
Robust linear regression
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Ridge regression

Motivation 1:

Recall the learning computation: ŵ =
(
X⊤X

)−1
X⊤y.

We cannot guarantee that the matrix X⊤X is invertible.
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Ridge regression

Here on, we shall focus on single output y in derivations in the sequel.

min
w,b

m∑
i=1

(fw,b (xi)− yi)
2
+ λw̄⊤w̄, where w̄ = Îdw = [0, w1, w2, . . . , wd]

⊤,

Îd ∈ R(d+1)×(d+1) is defined by setting the (1, 1) entry in the d+ 1 dimensional

identity matrix Îd+1 as 0. Note: The bias/offset b is NOT included in the ℓ2
regularization term, as it just affects the function’s height, not its complexity.
Linear Model: minw,b(Xw − y)⊤(Xw − y) + λw̄⊤w̄

∂

∂w
(Xw − y)⊤(Xw − y) + λw̄⊤w̄ = 0

⇒ 2X⊤Xw − 2X⊤y + 2λÎdw = 0

⇒ X⊤Xw + λÎdw = X⊤y

⇒
(
X⊤X+ λÎd

)
w = X⊤y

⇒ w =
(
X⊤X+ λÎd

)−1

X⊤y

Note that
(
X⊤X+ λÎd

)
is guaranteed to be invertible, given λ > 0.
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Ridge regression

Motivation 2:

Overfitting is an important challenge for linear regression, as shown below.
Note: M in the figure denotes the degree of polynomial hypothesis function.
If ovefitting, the prediction performance on testing data will be very poor.
How to alleviate ovefitting?
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Ridge regression
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ln lambda −20.135

Let’s see one simple example, we use a polynomial function (introduced
later) with 14 degree to fit m = 21 data points. The learned curve is very
“wiggly” (see above).

The parameter values of this curve are as follows

6.56,−36.934,−109.25, 543.452, 1022.561,−3046.224,−3768.013, 8524.54,
6607.897,−12640.058,−5530.188, 9479.73, 1774, 639,−2821.526

There are many large positive/negative values, such that a small change of
features could lead to significant change of output.
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Ridge regression

How to get smaller parameter values?
We can assume that the parameter w (excluding the bias b) follow a zero-
mean Gaussian prior

p(w) = N (w|0, τ2I) (9)

For clarity, we omit the bias b in the following derivation.
Utilizing this prior, we obtain the maximum a posteriori (MAP) estimation

wMAP = argmax
w

[ m∑
i=1

log p(yi|xi,w) + log p(w)
]

(10)

= argmax
w

[ m∑
i=1

logN (x⊤
i w, σ2) + logN (w|0, τ2I)

]
(11)

≡ argmin
w

[ m∑
i=1

(x⊤
i w − yi)

2 + λ∥w∥22
]
. (12)

The corresponding closed-form solution is given by

wMAP = (λI+X⊤X)−1X⊤y. (13)
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Ridge regression

The above method is also known as ridge regression, or penalized least
squares.

In general, adding a Gaussian prior to the parameters of a model to en-
courage them to be small is called ℓ2 regularization or weight decay.

As shown below, when we set a larger λ, i.e., more weight on the prior, the
resulting curve will be smoother.
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Polynomial regression

Motivation

Some data may be not linearly separated, such as the classic XOR data,
as shown on the bottom left.

Consequently, the linear regression model doesn’t work.

To tackle it, we could project the original data to the monomial axis x1x2.

Then, the XOR becomes linearly separated, as shown on the bottom right.

Accordingly, we can design a novel linear regression model, as follows

fw,b(x) = w0 + w1x1 + w2x2 + w12x1x2 + w11x
2
1 + w22x

2
2, where w0 = b.
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Polynomial regression

Polynomial expansion

The linear model fw,b(x) = x⊤w + b can be written as

fw,b(x) =

d∑
i=0

xiwi = w0 +

d∑
i=1

xiwi.

By including terms involving the products of pairs of components of x, we
obtain a quadratic model:

fw,b(x) = w0 +

d∑
i=1

wixi +

d∑
i=1

d∑
j=1

wijxixj .
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Polynomial regression

In general:

fw,b(x) = w0 +

d∑
i=1

wixi +

d∑
i=1

d∑
j=1

wijxixj +

d∑
i=1

d∑
j=1

d∑
k=1

wijkxixjxk + . . .

Remarks

For high dimensional d and high polynomial order, the number of poly-
nomial terms becomes explosive! (In fact, this number of terms grows
exponentially.)

Hence, for high dimensional problems, polynomials of order larger than 3
is seldom used.
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Polynomial regression

Linear model with basis expansion ϕ(x)

fw,b(x) = w0 +

d∑
i=1

wixi +

d∑
i=1

d∑
j=1

wijxixj +

d∑
i=1

d∑
j=1

d∑
k=1

wijkxixjxk + . . .

= ϕ(x)⊤w,

where

ϕ(x) = [1, x1, . . . , xd, . . . , xixj , . . . , xixjxk, . . .]
⊤,

w = [w0, w1, . . . , wd, . . . , wij , . . . , wijk, . . .]
⊤.

Note: fw,b(x) is still a linear function w.r.t. w, rather than x. Thus, it is still
a linear model.
Extending to the case of m data points, i.e., X = [x⊤

1 ; . . . ;x
⊤
m] ∈ Rm×(d+1), the

basis expansion is presented by

P(X) = [ϕ(x1)
⊤; . . . ;ϕ(xm)⊤] ∈ Rm×|w|.
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Polynomial regression

Example {xi,yi}mi=1 {x1 = 0, x2 = 0} → {y = 0}
{x1 = 1, x2 = 1} → {y = 1}
{x1 = 1, x2 = 0} → {y = 2}

2nd order polynomial model {x1 = 0, x2 = 1} → {y = 3}

fw,b(x) = w0 + w1x1 + w2x2 + w12x1x2 + w11x
2
1 + w22x

2
2

=
[
1 x1 x2 x1x2 x2

1 x2
2

]

w0

w1

w2

w12

w11

w22



P =


1 x1 x2 x1x2 x2

1 x2
2

1 x1 x2 x1x2 x2
1 x2

2

1 x1 x2 x1x2 x2
1 x2

2

1 x1 x2 x1x2 x2
1 x2

2

 =


1 0 0 0 0 0
1 1 1 1 1 1
1 1 0 0 1 0
1 0 1 0 0 1


JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning Lecture 05 Linear RegressionSeptember 19/21, 2023 67 / 80



Polynomial regression

Ridge regression with original features X:

Learning: ŵ = (X⊤X+ λI)−1X⊤y
Prediction: fw,b(Xnew) = Xnewŵ

Ridge regression with basis expansion P(X):

Learning: ŵ = (P⊤P+ λI)−1P⊤y
Prediction: fw,b(P(Xnew)) = Pnewŵ
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Polynomial regression

For Regression Applications

Learning: ŵ = (P⊤P+ λI)−1P⊤y, where y is continuous

Prediction: fw,b(P(Xnew)) = Pnewŵ

For Classification Applications

Learn discrete valued y (binary) or Y (one-hot)

Binary Prediction: fw,b(P(Xnew)) = sgn(Pnewŵ) if y ∈ {−1,+1}
Multi-Category Prediction: fw,b(P(Xnew)) = argmaxi=1,...,C(Pnewŵ)
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Polynomial regression

Example (Cont’d) {xi,yi}mi=1 {x1 = 0, x2 = 0} → {y = −1}
{x1 = 1, x2 = 1} → {y = −1}
{x1 = 1, x2 = 0} → {y = +1}

2nd order polynomial model {x1 = 0, x2 = 1} → {y = +1}

P =


1 x1 x2 x1x2 x2

1 x2
2

1 x1 x2 x1x2 x2
1 x2

2

1 x1 x2 x1x2 x2
1 x2

2

1 x1 x2 x1x2 x2
1 x2

2

 =


1 0 0 0 0 0
1 1 1 1 1 1
1 1 0 0 1 0
1 0 1 0 0 1


ŵ = P⊤(PP⊤)−1y ( note: under determined linear system)

=


1 1 1 1
0 1 1 0
0 1 0 1
0 1 0 0
0 1 1 0
0 1 0 1



1 1 1 1
1 6 3 3
1 3 3 1
1 3 1 3


−1
−1
−1
+1
+1

 =


−1
1
1
−4
1
1


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Polynomial regression

Example (Cont’d) Prediction:
Test point 1: {x1 = 0.1, x2 = 0.1} → {y = class − 1 or + 1?}
Test point 2: {x1 = 0.9, x2 = 0.9} → {y = class − 1 or + 1?}
Test point 3: {x1 = 0.1, x2 = 0.9} → {y = class − 1 or + 1?}

ŷ = Ptŵ Test point 4: {x1 = 0.9, x2 = 0.1} → {y = class − 1 or + 1?}

ŷ = sgn(


1 0.1 0.1 0.01 0.01 0.01
1 0.9 0.9 0.81 0.81 0.81
1 0.1 0.9 0.09 0.01 0.81
1 0.9 0.1 0.09 0.81 0.01



−1
1
1
−4
1
1

)

= sgn(


−0.82
−0.82
0.46
0.46

)

=


−1
−1
1
1


99K
99K
99K
99K

Class -1
Class -1
Class +1
Class +1
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Lasso regression

We can replace the Gaussian prior by a Laplacian prior, i.e.,

p(w) = Lap(w|0, λ) = 1

2λ
exp

(
− |w|

λ

)
, (14)

The combination of the Gaussian distribution of p(y|x,w) and the Lapla-
cian prior, leading to

wMAP = argmax
w

[ m∑
i=1

log p(yi|xi,w) + log p(w)
]

(15)

= argmax
w

[ m∑
i=1

logN (w⊤x, σ2) + Lap(w|0, b)
]

(16)

≡ argmin
w

[ m∑
i=1

(x⊤
i w − yi)

2 + α|w|
]
. (17)
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Lasso regression

It is Lasso regression, and the regularization is called ℓ1 regularization.
It will encourage the sparse parameters.

As shown below, when we set a larger α, i.e., more weight on the prior, the
resulting curve will be smoother.
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Geometry of Ridge and Lasso regression

Geometry of Ridge and Lasso regression. Which one is Ridge?
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Robust linear regression

When there is a few outliers in the training data D, which are far from
most other points, then learned parameters wMLE will be significantly
influenced, leading to very poor fit.
Let’s see the loss curve of the residual sum of squares (RSS),

J(w) =
1

2

m∑
i=1

(x⊤
i w − yi)

2. (18)

The error increases quadratically along with the residual. To minimize such
a large error, the linear model will be significantly changed.
How to alleviate the significant influence of outliers?
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Robust linear regression

We adopt the ℓ1 loss to replace the ℓ2 loss, as follows

J(w) =

m∑
i=1

|x⊤
i w − yi|. (19)

The curves of ℓ1 and ℓ2 losses are shown as follows.

When the residual is large, the ℓ1 loss is much smaller than the ℓ2 loss,
such that the influence of outliers could be alleviated.

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

 

L2

L1

huber

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning Lecture 05 Linear RegressionSeptember 19/21, 2023 76 / 80



Robust linear regression

Actually, the above ℓ1 loss can also be derived from the probabilistic per-
spective, by assuming that

p(y|x,w, b) = Lap(y|x,w, b) ∝ exp(−1

b
|y −w⊤x|) (20)

Applying the maximum log-likelihood estimation (MLE), we will obtain

wMLE = argmax
w

logL(w;D) = argmax
w

m∑
i

log p(y|x,w) (21)

≡ argmin
w

1

b

m∑
i=1

|x⊤
i w − yi| (22)
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Robust linear regression

wMLE = argmin
w

m∑
i=1

|x⊤
i w − yi| (23)

However, the ℓ1 loss function is non-differentiable. The gradient descent
algorithm cannot be adopted.

We can transform it to a linear program, as follows

min
w,t

m∑
i

ti (24)

s.t. −ti ≤ x⊤
i w − yi ≤ ti, 1 ≤ i ≤ m.

Please refer to:
https://math.stackexchange.com/questions/1639716/how-can-l-1-norm-minimization-with-linear-equality-constraints-basis-pu
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Robust linear regression

wMLE = argmin
w

m∑
i=1

|x⊤
i w − yi| (25)

We can also utilize the following equation:

|a| = min
µ>0

1

2
(
a2

µ
+ µ) (26)

Then, the above ℓ1 minimization problem (25) can be reformulated as fol-
lows

min
w

min
µ1,...,µm>0

1

2

( (x⊤
i w − yi)

2

µi
+ µi

)
. (27)

It can be iteratively and alternatively optimized as follows:
Given w, µi = |x⊤

i w − yi|, i = 1, . . . ,m
Given µ, w = argminw

∑m
i=1

1
2
(x⊤

i w − yi)
2

It is called iteratively reweighted least squares method.
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Summary of different variants of linear regressions

Note that the uniform distribution will not change the mode of the likelihood.
Thus, MAP estimation with a uniform prior corresponds to MLE.

p(y|x,w) p(w) regression method
Gaussian Uniform Least squares
Gaussian Gaussian Ridge regression
Gaussian Laplace Lasso regression
Laplace Uniform Robust regression
Student Uniform Robust regression

prior mean

MAP Estimate

ML Estimate
u

1

u
2
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