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Affine set

The Affine line through x1,x2 : all points

x = θx1 + (1− θ)x2 (θ ∈ R)

The Affine set contains the line through any two distinct points in the
set.

Example: solution set of linear equations {x|Ax = b}
(conversely, every affine set can be expressed as solution set of system of
linear equations)
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Convex set

The line segment between x1,x2 : all points

x = θx1 + (1− θ)x2

with 0 ≤ θ ≤ 1

The convex set contains line segment between any two points in the set.

x1,x2 ∈ C, 0 ≤ θ ≤ 1 → θx1 + (1− θ)x2 ∈ C

Examples: (one convex, two nonconvex sets)
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Convex function definition

f : Rn → R is convex if domf is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x,y ∈ domf, 0 ≤ θ ≤ 1

f is concave if −f is convex

f is strictly convex if domf is convex and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for x,y ∈domf, x ̸= y, 0 < θ < 1
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Examples on R

Convex:

affine: ax+ b on R, for any a, b ∈ R
exponential: eax, for any a ∈ R
powers: xα on R+, for α ≥ 1 or α ≤ 0

powers of absolute value: |x|p on R, for p ≥ 1

negative entropy: x log x on R+

Concave:

affine: ax+ b on R, for any a, b ∈ R
powers: xα on R+, for 0 ≤ α ≤ 1

logarithm: log x on R+
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Examples on Rn and Rm×n

Affine functions are convex and concave

Examples on Rn

Affine function f(x) = a⊤x+ b

ℓp norms: ∥x∥p = (
∑n

i=1 |xi|p)
1/p

for p ≥ 1; ∥x∥∞ = maxk |xk|
All norms are convex functions, and the above is obtained by checking the con-

vexity of the domain

Examples on Rm×n (m× n matrices)

Affine function

f(X) = tr
(
A⊤X

)
+ b =

m∑
i=1

n∑
j=1

aijxij + b,

where tr(·) indicates the trace norm, i.e., the summation of all diagonal
values of a matrix
Spectral (maximum singular value) norm

f(X) = ∥X∥2 = σmax(X) =
(
λmax

(
X⊤X

))1/2
JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning Lecture 04 Basic OptimizationSeptember 21, 2023 9 / 35



First-order condition of convex function

f is differentiable if dom f is open and the gradient

∇f(x) =

(
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)
exists at each x ∈ dom f

1st-order condition: differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)⊤(y − x) for all x,y ∈ dom f

First-order approximation of f is global underestimator
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Second-order conditions of convex function

f is twice differentiable if dom f is open and the Hessian ∇2f(x) ∈ Snn,

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i, j = 1, . . . , n,

exists at each x ∈ dom f

2nd-order conditions: for twice differentiable f with convex domain

f is convex if and only if

∇2f(x) ⪰ 0 for all x ∈ dom f

if ∇2f(x) ≻ 0 for all x ∈ dom f , then f is strictly convex

Note that ⪰ indicates positive semi-definite, and ≻ indicates positive defi-
nite.

Note: A square matrix W is positive semi-definite if x⊤Wx ≥ 0 for any
compatiable x or if all the eigenvalues of W are non-negative.
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Examples

Quadratic function: f(x) = (1/2)x⊤Px+ q⊤x+ r (with P ∈ Sn×n )

∇f(x) = Px+ q, ∇2f(x) = P

convex if P ⪰ 0

Least-squares objective: f(x) = ∥Ax− b∥22

∇f(x) = 2A⊤(Ax− b), ∇2f(x) = 2A⊤A

convex (for any A)

Quadratic-over-linear: f(x, y) = x2/y

∇2f(x, y) =
2

y3

[
y
−x

] [
y
−x

]⊤
⪰ 0

convex for y > 0
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Jensen’s inequality

Basic inequality: if f is convex, then for 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

Extension: if f is convex, then

f(E[z]) ≤ E[f(z)]

for any random variable z
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Optimization problem in standard form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p

x ∈ Rn is the optimization variable

f0 : Rn → R is the objective or cost function

fi : Rn → R, i = 1, ...,m, are the inequality constraint functions

hi : Rn → R are the equality constraint functions
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Optimal objective value

Optimal objective value:

p∗ = inf{f0(x)|fi(x) ≤ 0, i = 1, ...,m, hi(x) = 0, i = 1, ..., p},

where inf{S} indicates the infimum of the set S, i.e., greatest lower bound.

Properties:

p∗ = ∞ if problem is infeasible (no x satisfies the constraints)

p∗ = −∞ if problem is unbounded below

Reference:
https://en.wikipedia.org/wiki/Infimum_and_supremum
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Optimal and locally optimal points

Feasible point: x is feasible if x ∈ domf0 and it satisfies the constraints

Optimal point: A feasible x is optimal if f0(x) = p∗; Xopt is the set of optimal
points

Locally optimal point: x is locally optimal if there is an r > 0 such that x is
optimal for
minimizez f0(z)
subject to fi(z) ≤ 0, i = 1, . . . ,m, hi(z) = 0, i = 1, . . . , p,

∥z− x∥2 ≤ r

Examples (with n = 1,m = p = 0 )

f0(x) = 1/x,dom f0 = R+ : p⋆ = 0, no optimal point

f0(x) = − log x, dom f0 = R+ : p⋆ = −∞
f0(x) = x log x, dom f0 = R+ : p⋆ = −1/e, x = 1/e is optimal

f0(x) = x3 − 3x, p⋆ = −∞, local optimum at x = 1
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Implicit constraints

The standard form optimization problem has an implicit constraint

x ∈ D =

m⋂
i=0

dom fi ∩
p⋂

i=1

domhi,

We call D the domain of the problem

The constraints fi(x) ≤ 0, hi(x) = 0 are the explicit constraints

A problem is unconstrained if it has no explicit constraints (m = p = 0)

Example:

minimize f0(x) = −
k∑

i=1

log
(
bi − a⊤i x

)
is an unconstrained problem with implicit constraints a⊤i x < bi
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Convex optimization problem

Standard form convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

a⊤i x = bi, i = 1, . . . , p

f0, f1, . . . , fm are convex; equality constraints are affine

It is often written as

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

Important property: feasible set of a convex optimization problem is convex
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Convex optimization problem

Example
minimize f0(x) = x2

1 + x2
2

subject to f1(x) = x1/
(
1 + x2

2

)
≤ 0

h1(x) = (x1 + x2)
2
= 0

f0 is convex; feasible set {(x1, x2) | x1 = −x2 ≤ 0} is convex

Originally, not a convex problem (according to our definition): f1 is not
convex, h1 is not affine

Equivalent (but not identical) to the convex problem

minimize x2
1 + x2

2

subject to x1 ≤ 0
x1 + x2 = 0
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Local and global optima of the convex problem

Theorem: Any locally optimal point of a convex problem is globally optimal
Proof :
Step 1: suppose x is locally optimal, but there exists a feasible y with

f0(y) < f0(x) (1)

And, x locally optimal means there is a r > 0 such that

z is feasible, ∥ z− x ∥2≤ r ⇒ f0(z) ≥ f0(x) (2)

Step 2: we construct that

z = θy + (1− θ)x with θ = r/(2 ∥ y − x ∥2) (3)

If we set ∥ y − x ∥2= 1.5r, then we have ∥ z− x ∥2= 0.5r. It implies that y is
out of the local region of x, while z is within the local region.
Step 3: According to the basic property of convex function, we have

f0(z) ≤ θf0(y) + (1− θ)f0(x) < θf0(x) + (1− θ)f0(x) = f0(x),

where the second < utilizes (1), which contradicts our assumption that x is
locally optimal, i.e., (2). It means that there doesn’t exist a feasible y to
satisfy (1), thus x is also globally optimal
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Unconstrained convex minimization

Unconstrained convex minimization problem

minimize f(x)

f convex, twice continuously differentiable (hence dom f open)

We assume optimal value p⋆ = infx f(x) is attained (and finite)

Unconstrained convex minimization methods

Produce sequence of points x(k) ∈ dom f, k = 0, 1, . . . with

f(x(k)) → p⋆
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General descent Method

One step update of general descent method:

x(k+1) = x(k) + t(k)∆x(k) with f(x(k+1)) < f(x(k))

∆x is the search direction; t is the step size

We also define the notation x+ = x+ t∆x

Recall 1st-order condition of convex function,

f(y) ≥ f(x) +∇f(x)⊤(y − x) for all x,y ∈ dom f

Thus, we have

f(x+) ≥ f(x) +∇f(x)⊤(x+ − x) = f(x) + t∇f(x)⊤∆x

If f(x+) < f(x), then it implies ∇f(x)⊤∆x < 0, i.e., ∆x is a descent
direction
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General descent Method

General descent method

Given a starting point x ∈ domf .
repeat

1. Determine a descent direction ∆x
2. Choose a step size t > 0, such as using Line search method
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.
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Line search method

Exact line search: t = argmint>0 f(x+ t∆x)

Backtracking line search (inexact) (with parameters α ∈ (0, 1/2), β ∈ (0, 1))

Starting at t = 1, repeat t := βt until

f(x+ t∆x) < f(x) + αt∇f(x)⊤∆x

Graphical interpretation: backtrack until t ≤ t0
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Gradient descent method

General descent method with ∆x = −∇f(x) is called gradient descent method

Given a starting point x ∈ domf .
repeat

1. ∆x := −∇f(x).
2. Choose step size t via exact or backtracking line search
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.

Stopping criterion usually of the form ∥∇f(x)∥2 ≤ ϵ

Note that although here we consider the convex minimization problem,
gradient descent and its variants (e.g., stochastic gradient descent) can
also be directly applied to solve non-convex optimization problem, such as
training deep neural networks

In this course, gradient descent method will be used in linear regression
and logistic regression
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Example: quadratic problem in R2

min
x

f(x) = (1/2)(x2
1 + γx2

2),

where γ > 0. Solve the above problem using gradient descent with exact line
search, starting at x(0) = (γ, 1), we can derive the following update:

x
(k)
1 = γ

(
γ − 1

γ + 1

)k

, x
(k)
2 =

(
−γ − 1

γ + 1

)k

very slow if γ ≫ 1 or γ ≪ 1
example for γ = 10:
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Example: non-quadratic example

min
x1,x2

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1
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Constrained minimization and Lagrange duality

Given a general minimization problem

min
x∈Rn

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m
ℓj(x) = 0, j = 1, . . . , r

The Lagrangian function:

L(x,u,v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vjℓj(x)

The Lagrange dual function:

g(u,v) = min
x∈Rn

L(x,u,v)

The dual problem (an easier, convex problem w.r.t.u and v):

max
u∈Rm,v∈Rr

g(u,v)

subject to u ≥ 0

Let p∗ = min f(x) and d∗ = max g(u,v), by definition we have p∗ ≥ d∗.
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KKT conditions

Given general problem

min
x∈Rn

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m
ℓj(x) = 0, j = 1, . . . , r

The Karush-Kuhn-Tucker conditions or KKT conditions are:

0 ∈ ∂f(x) +
m∑
i=1

ui∂hi(x) +

r∑
j=1

vj∂ℓj(x) (stationarity)

ui · hi(x) = 0 for all i (complementary slackness)
hi(x) ≤ 0, ℓj(x) = 0 for all i, j (primal feasibility)
ui ≥ 0 for all i (dual feasibility)

Note: For a convex problem, if x,u,v satisfy the KKT conditions, then
they are optimal.

Note: Lagrangian function and KKT conditions will be used later in support
vector machines, K-means Gaussian mixture models, and principal component
analysis in this course
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Optimization and machine learning

Optimization is one of the basis techniques in machine learning:

Convex minimization will be directly utilized in linear regression, logistic
regression, support vector machine in this course

Gradient descent method will be adopted to solve linear regression, logistic
regression and neural networks

Lagrangian function and KKT conditions will be adopted to solve support
vector machine, K-means, Gaussian mixture models, and principal compo-
nent analysis

Given the objective function and constraints of a machine learning model, you
should be able to determine

whether it is convex or non-convex optimization problem

whether there is local or global optima

which optimization method could be adopted to solve the problem
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