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@ Notations, vectors, matrices
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Notations, tors, matrices

@ A scalar is a simple numerical value, like 15 or —3.2.

@ Variables or constants that take scalar values are denoted by an italic
letter, like x or a.

@ We shall focus on real numbers.

e The summation over a collection {x1, zo, 3, ..., T} is denoted like this:
m
in =21 +2o+...+2Tm,
i=1

e The product over a collection {z1,x2,x3,..., %} is denoted like this:

m
||Il:$1l‘2$m
i=1

JIA, Kui School of Data Science, CUHKDDA3020 Machine Learning Lecture 03 September 14/19, 2023



Notations, vectors, matrices

@ A vector is an ordered list of scalar values, called attributes. We denote a
vector as a bold character, for example, x or w.

@ Vectors can be visualized as arrows that point to some directions as well
as points in a multi-dimensional space.

e In many books, vectors are written column-wise:
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Notations, vectors, matrices

. . . 2 -2 1
Illustrations of three two-dimensional vectors, a = 3 ,b= 5 [¢= | are
given in Figure 1 below.

6
5 5 .
4 4
3 3 .
T T
1 1
0 0 .
B - 0 1 2 R — i 2

0
O] PO

Figure: Three vectors visualized as directions and as points.




ors, matrices

o We denote an attribute of a vector as an italic value with an index, like
this: w@ or ). The index j denotes a specific dimension of the vector,
the position of an attribute in the list.

e For instance, in the vector a shown in red in Figure 1,

_ [a®] _ ]2 ] ]2
a=| (| = |3|or more commonly, a=| | =3

Note:

@ The notation ) should not be confused with the power operator, such as the 2
in 22 (squared) or 3 in ® (cubed).

@ If we want to apply a power operator, say square, to an indexed attribute of a
vector, we write like this: (z(7))2.
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Notations, vectors, matrices

e A matrix is a rectangular array of numbers arranged in rows and columns.
Below is an example of a matrix with two rows and three columns,

2 4 -3
X‘[m -6 1}

o Matrices are denoted with bold capital letters, such as X or W.
Note:

@ A variable can have two or more indices, like this: 2l

i

(k)

or like this z; .

@ For example, in neural networks, we denote as xﬁi the input feature j of unit u
in layer [.
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Notations, vectors, matrices

Operations on Vectors:
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Notations, vectors, matrices

@ Matrix or Vector Transpose:

Z1 T
X = X = |T; X2
e N
i1 Ti12 T13 Ti1 L2101 T3
X = |wo1 T2o T3], X' = Tio2 Too X32
€r3,1 T32 T3;3 r1,3 T23 T3,3

e Dot Product or Inner Product of Vectors:

x-y=x'y

=l )

= 21Y1 + T2Y2

Machine



Notations, vectors, matrices

e Matrix-Vector Product

Ti1 Ti12 T1,.3 w1
Xw = |29 @20 To3 w2

| L3,1 32 X33 w3

T1,1W1 + T 2w2 + Ty 3W3
= |ro w1 + 1o oW + 1o 3W3
| T3,1W1 + T3 2W2 + T3 3W3




Notations, vectors, matrices

Matrix-Vector Product

w1 Wi Wi,3
XTW = [1’1 ) .’Eg] w21 w2 W23
w31 W32 W33

= [(u'l.lﬁ + wo 1wy + w3 123)  (w) oxy + wo omy + ws ozg) (wy 3wy + wo 3z + w3,313)]




Notations, vectors, matrices

Matrix-Matrix Product

XW =

Z1,1 T1,d w11 c.. Wi1p

)

_(,Em’l oo Tmd Wq,1 .- Wd,h

I (:17171101,1 ... +x17dwd,1) (zl,lwl,h +... +$17dwd7h)

_(l‘m71w1,1 + ...+ Jtm7dwd,1) e (Z‘m71w1,h 4+ ...+ xm7dwd7h)

r d d
D1 TLIWIT e D T1iWik

d d
LD i1 TrniWist e Do T Wik

Machine



© Matrix inverse, determinant, independence




Matrix inverse

Matrix Inverse

e Definition:
A d x d square matrix A is called invertible (also nonsingular) if there
exists a d x d square matrix B such that AB = BA =1 (Identity matrix)

given by
1 0 0 0
0 1 0 0
I=1|: -~ . . of d by d dimension
0 0 1 0
0 0 0 1
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Matrix inverse

Matrix Inverse Computation

Al = ﬁadj(A)

o det(A) is the determinant of A

e adj(A) is the adjugate or adjoint of A which is the transpose of its cofactor
matrix C, i.e., adj(A) = CT

e The cofactor C,; ; of a matrix is the (7, 7)-minor M; ; times a sign factor
(71)Z+J, i.@., Ci,j = M@j X (71)Z+J

o M, ; is computed through two-steps: removing the i-th row and j-th col-
umn from the original matrix to obtain a small matrix; computing the

determinant of the small matrix

a b

d
o For example, A = [c d

] then C = [_b _ac] adj(A) = [d _b]

—C a
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Determinant

Determinant computation

o Example: 2 x 2 matrix

det(A) =|A| = = ad — bc

a
Cc

b
d




Determinant

Determinant computation
o Example: 3 x 3 matrix

a b c [ I R O o o 0 o o
[Al=|d e fl=a|0 e f|=bld O f|4+c|l d e O
g h i O h 1 g O 4 g h O

_ e f d f d e

4 z‘ ‘g i ’—i—c g h

=a(ei — fh) — b(di — fg) + c(dh — eg)

o Each determinant of a 2 x 2 matrix in this equation is called a minor of the
matrix A. This procedure can be extended to give a recursive definition for
the determinant of a n X n matrix, known as Laplace expansion.

@ Determinant has an elegant geometric interpretation. If interested,
please refer to https://spaces.ac.cn/archives/1770.

19 /37
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Co-factor matrix

Consider a 3x3 matrix

a;; a2 a3
A=|an ax ay|.

Qim Qin

Qim  Qin
= det < .
Ajm  Qjn

Ajm  Ajn
azy Gz agg

Its cofactor matrix is

a2 Q23 a Qg3 a1 a2
+ - +
as ass asz asg as as
a2 a3 an a3 a;; a2
C=| - + — ,
aszy ass as ass as as
a2 a3 a; a3 aip a2
+ - +
Q22 Q23 a1 Q23 a1 a2




Co-factor matrix

Consider a 3x3 matrix

an a2 a3

A Aim  Qin | det (aim ain)
= | a a a; = :
21 22 23 jm Qo Qjm  Ajn
asy az2 asg
Its cofactor matrix is
a2 Q23 a1 Q23 az1 a2
+ - +
asy ass asy  ass asy  asz
a2 a3 apn a3 an a2
C=| — + — ,
as2 ass azy  ass azy  as2
a2 a3 ai; a3 ai; a2
+ - +
a2 Q23 Q21 Q23 az1 G2




Co-factor matrix

Consider a 3x3 matrix

ann a2 a3
A=|an apn ax

as  az2 ass

Its cofactor matrix is

az Q3 az Q3 a1 a2
+ - +
a2 ass asr  ass as  as
a2 a3 a;; a3 aplp a2
C=| — + — ,
asz asg as ass as  asz
a2 a3 ‘ _|an e ‘ a1z ‘
Q2 Q23 a1 Q23 as
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Co-factor matrix

Consider a 3x3 matrix

al; a2 a3

Qim  Qin
A=\|ay axpn ay |-

Ajm  Qjn
asy as2 ass

Its cofactor matrix is

azz Q23 az Q23 az1 a2
+ - +
asz ass asy  ass asy  as2
a2 a3 a;; a3 aip a2
C=| - + — ,
asz  as3 asy  ass asy  asz
aiz az| |an ai ai au'
a2 Q23 a1 Q23 a1 Q2
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Co-factor matrix

Consider a 3x3 matrix

a; a2 a3 a; a;
im mn

Qi Qin
A=|an axn ax = det ( :
ajm ajn ajm a]-n
azy asz agg
Its cofactor matrix is
a2 Q23 a Q23 a1 a2
+ - +
azz as3 asy  ass azy  as2
C-— a2 a3 an a3 aip a2 ’
= - - ’
azz2 as3 as  ass azy  as2
a2 a3 a;; a3 a;; a2
+ - +
a2 Q23 a Q23 a1 a2
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Linear dependence and independence

Linear dependence and independence
o A collection of d-vectors xi,...,X,, (with m > 1) is called linearly depen-
dent if
61x1+-~-+5mxm:0
holds for some f4,...,[3,, that are not all zero.

e A collection of d-vectors Xi,...,X,, (with m > 1) is called linearly inde-
pendent, which means that

ﬁ1x1+~”+ﬁmxm:0

only holds for 1 = ... = B,, =0.

1 of Data Science, CUHKDDA3020 Machine Learning Lecture 03 September 14/19, 2023



Linear dependence and independence

Geometry of dependency and independency

X2

Bix1 + B2x, =0 Bix1 + Box; # B3X;
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© Systems of linear equations
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Systems of linear equations

o Consider a system of m linear equations in d variables wy, ..., wy:
T1,1W1 + T1,2W2 + ... X1,4Wq = Y1

To W1 + T2 2W2 + ... T2 JWq = Y2

Tm,1W1 + T, 2W2 +...+ Tm,dWd = Ym

Machine



Systems of linear equations

These equations can be written compactly in matrix-vector notation:
Xw =y,
where

T1,1 RPN T1.d w1 Y1

Tm,1 e Tmd Wq Ym

Note: X is of m x d dimension.

JIA, Kui ol of Da ) < a 1ing  Lecture



Systems of linear equations

(i) Square of even-determined system: m =d in Xw =y, X € R™*¢
(equal number of equations and unknowns, i.e., X € R4*%)

If X is invertible (or X ~1X = I), then pre-multiply both sides by X!, we have
X 1Xw=X"1y

= WZX_ly

If all rows or columns of X are linearly independent, then X is invertible.
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Systems of linear equations

Example w;4+ws=4 (1) Two unknowns and
wy —2ws =1 (2) two equations
3r i
11 w] 4] %
1 -2 S I P
X w y s Wil
1 %
g os v d
_x-! 0 \
w=X""y s Lr
1], E .
T =2 1 - 1 Z |
2-4 3 2 A 0 1 2 3 4 5 6 ¥ 8
wq

Here, the rows or columns of X are linearly independent, hence X is invert-

ible.
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Systems of linear equations

(ii)Over-determined system: m > d in Xw =y, X € R™*¢

(i.e.

, there are more equations than unknowns)

This set of linear equations has NO exact solution (X is non-square and
hence not invertible). However, an approximated solution is yet avail-
able.

If the left-inverse of X exists such that XX = I, then pre-multiply both
sides by X' results in

X Xw =Xy
=W = XTy

Definition: a matrix B that satisfies BA=I (identity matrix) is called a
left-inverse of A. (Note: A is m-by-d and B is d-by-m.

Note: The left-inverse can be computed as X = (XTX)"!X T given XX
is invertible.

JIA, Kui Sc
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Systems of linear equations

Example w;+wy=1 (1) Two unknowns and
wy —wy =0 (2) three equations
w1 = 2 (3)
3 P
25 //
1 1 ’71—‘ 2 -
1 -1 [“”1] = |0 15
1 0 w2 M !
W v 3 05
This set of linear equations has NO O?
exact solution. s A
2 AN
2 1 0 1 2 3

w=Xly=X"X)"1XTy Here X "X is invertible.

3ol o1 1m
{0 2} [1 -1 0} M

- {015} (A\])]H‘oxinmri(m)
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Systems of linear equations

(iii)Under-determined system: m < din Xw =y, X € R™*4
(i.e., there are more unknowns than equations = infinite number of solutions)

o If the right-inverse of X exists such that XX' = I, then the d-vector
w = X'y (one of the infinite cases) satisfies the equation Xw =y, i.e.,

XXTy =y

=Y=Y
o Definition: a matrix B that satisfies AB=I (identity matrix) is called a
right-inverse of A. (Note: A is m-by-d and B is d-by-m).

e Note: The right-inverse can be computed as X! = XT(XX )~ given
XX is invertible.
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Systems of linear equations

Derivation:

@ Under-determined system: m < d in Xw =y, X € R™*4

(i.e., there are more unknowns than equations = infinite number of solu-
tions = but a unique solution is yet possible by constraining the search
using w = X a !)

o If XX is invertible, let w — X 'a, then

XX a=y
=a= (XXT)*ly
w=X"a=X"(XX")"ly
————

Xt
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Systems of linear equations

Example w; +2ws +3wz =2 (1) Three unknowns and
wy — 2wy + 3wz =1 (2) two equations
12 3] | 2
I
w3
X w y

This set of linear equations has in-
finitely many solutions along the in-
tersection line.

w=X"(XX")"1y Here XX " is invertible.

1 1 0.15
2 :
=12 -2 [164 164} -1 {I} =10.25 (Constrained solution)
3 3 0.45
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Systems of linear equations

Example w;+ 2wy +3wz=2 (1) Three unknowns and
3wy +6wa+9w3 =1 (2) two equations
12 3] |2
36 9 [ T 1
w3
X w y 157‘
Here both XX' and XX are 5 5 \
NOT invertible! 0 2

There is NO solution for the
system. )
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