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Notations, vectors, matrices

A scalar is a simple numerical value, like 15 or −3.2.

Variables or constants that take scalar values are denoted by an italic
letter, like x or a.

We shall focus on real numbers.

The summation over a collection {x1, x2, x3, . . . , xm} is denoted like this:

m∑
i=1

xi = x1 + x2 + . . .+ xm

The product over a collection {x1, x2, x3, . . . , xm} is denoted like this:

m∏
i=1

xi = x1 · x2 · . . . · xm
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Notations, vectors, matrices

A vector is an ordered list of scalar values, called attributes. We denote a
vector as a bold character, for example, x or w.

Vectors can be visualized as arrows that point to some directions as well
as points in a multi-dimensional space.

In many books, vectors are written column-wise:

a =

[
2
3

]
, b =

[
−2
5

]
, c =

[
1
0

]
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Notations, vectors, matrices

Illustrations of three two-dimensional vectors, a =

[
2
3

]
,b =

[
−2
5

]
, c =

[
1
0

]
are

given in Figure 1 below.

Figure: Three vectors visualized as directions and as points.
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Notations, vectors, matrices

We denote an attribute of a vector as an italic value with an index, like
this: w(j) or x(j). The index j denotes a specific dimension of the vector,
the position of an attribute in the list.

For instance, in the vector a shown in red in Figure 1,

a =

[
a(1)

a(2)

]
=

[
2
3

]
, or more commonly, a =

[
a1
a2

]
=

[
2
3

]

Note:

The notation x(j) should not be confused with the power operator, such as the 2
in x2 (squared) or 3 in x3 (cubed).

If we want to apply a power operator, say square, to an indexed attribute of a
vector, we write like this: (x(j))2.
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Notations, vectors, matrices

A matrix is a rectangular array of numbers arranged in rows and columns.
Below is an example of a matrix with two rows and three columns,

X =

[
2 4 −3
21 −6 −1

]
Matrices are denoted with bold capital letters, such as X or W.

Note:

A variable can have two or more indices, like this: x
(j)
i or like this x

(k)
i,j .

For example, in neural networks, we denote as x
(j)
l,u the input feature j of unit u

in layer l.
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Notations, vectors, matrices

Operations on Vectors:

x+ y =

[
x1

x2

]
+

[
y1
y2

]
=

[
x1 + y1
x2 + y2

]

x− y =

[
x1

x2

]
−
[
y1
y2

]
=

[
x1 − y1
x2 − y2

]
ax = a

[
x1

x2

]
=

[
ax1

ax2

]
1

a
x =

1

a

[
x1

x2

]
=

[
1
ax1
1
ax2

]
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Notations, vectors, matrices

Matrix or Vector Transpose:

x =

[
x1

x2

]
, x⊤ =

[
x1 x2

]
X =

x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

 , X⊤ =

x1,1 x2,1 x3,1

x1,2 x2,2 x3,2

x1,3 x2,3 x3,3


Dot Product or Inner Product of Vectors:

x · y = x⊤y

=
[
x1 x2

] [y1
y2

]
= x1y1 + x2y2
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Notations, vectors, matrices

Matrix-Vector Product

Xw =

x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

w1

w2

w3


=

x1,1w1 + x1,2w2 + x1,3w3

x2,1w1 + x2,2w2 + x2,3w3

x3,1w1 + x3,2w2 + x3,3w3
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Notations, vectors, matrices

Matrix-Vector Product

x⊤W =
[
x1 x2 x3

] w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

w3,1 w3,2 w3,3


= [(w1,1x1 + w2,1x2 + w3,1x3) (w1,2x1 + w2,2x2 + w3,2x3) (w1,3x1 + w2,3x2 + w3,3x3)]
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Notations, vectors, matrices

Matrix-Matrix Product

XW =

x1,1 . . . x1,d

...
. . .

...
xm,1 . . . xm,d


w1,1 . . . w1,h

...
. . .

...
wd,1 . . . wd,h


=

 (x1,1w1,1 + . . .+ x1,dwd,1) . . . (x1,1w1,h + . . .+ x1,dwd,h)
...

. . .
...

(xm,1w1,1 + . . .+ xm,dwd,1) . . . (xm,1w1,h + . . .+ xm,dwd,h)



=


∑d

i=1 x1,iwi,1 . . .
∑d

i=1 x1,iwi,h

...
. . .

...∑d
i=1 xm,iwi,1 . . .

∑d
i=1 xm,iwi,h
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Matrix inverse

Matrix Inverse

Definition:
A d× d square matrix A is called invertible (also nonsingular) if there
exists a d× d square matrix B such that AB = BA = I (Identity matrix)
given by

I =


1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
. . .

. . .
...

0 0 . . . 1 0
0 0 . . . 0 1

 of d by d dimension
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Matrix inverse

Matrix Inverse Computation

A−1 =
1

det(A)
adj(A)

det(A) is the determinant of A

adj(A) is the adjugate or adjoint of A which is the transpose of its cofactor
matrix C, i.e., adj(A) = C⊤

The cofactor Ci,j of a matrix is the (i, j)-minor Mi,j times a sign factor
(−1)i+j , i.e., Ci,j = Mi,j × (−1)i+j

Mi,j is computed through two-steps: removing the i-th row and j-th col-
umn from the original matrix to obtain a small matrix; computing the
determinant of the small matrix

For example, A =

[
a b
c d

]
then C =

[
d −c
−b a

]
, adj(A) =

[
d −b
−c a

]
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Determinant

Determinant computation

Example: 2 × 2 matrix

det(A) = |A| =
∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc (1)
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Determinant

Determinant computation

Example: 3 × 3 matrix

|A| =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣∣∣
□ □ □
□ e f
□ h i

∣∣∣∣∣∣− b

∣∣∣∣∣∣
□ □ □
d □ f
g □ i

∣∣∣∣∣∣+ c

∣∣∣∣∣∣
□ □ □
d e □
g h □

∣∣∣∣∣∣
= a

∣∣∣∣ e f
h i

∣∣∣∣− b

∣∣∣∣ d f
g i

∣∣∣∣+ c

∣∣∣∣ d e
g h

∣∣∣∣
= a(ei− fh)− b(di− fg) + c(dh− eg)

Each determinant of a 2×2 matrix in this equation is called a minor of the
matrix A. This procedure can be extended to give a recursive definition for
the determinant of a n× n matrix, known as Laplace expansion.

Determinant has an elegant geometric interpretation. If interested,
please refer to https://spaces.ac.cn/archives/1770.
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Co-factor matrix
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Co-factor matrix
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Co-factor matrix
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Co-factor matrix
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Linear dependence and independence

Linear dependence and independence

A collection of d-vectors x1, . . . ,xm (with m ≥ 1) is called linearly depen-
dent if

β1x1 + . . .+ βmxm = 0

holds for some β1, . . . , βm that are not all zero.

A collection of d-vectors x1, . . . ,xm (with m ≥ 1) is called linearly inde-
pendent, which means that

β1x1 + . . .+ βmxm = 0

only holds for β1 = . . . = βm = 0.

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning Lecture 03 Linear AlgebraSeptember 14/19, 2023 25 / 37



Linear dependence and independence

Geometry of dependency and independency
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Systems of linear equations

Consider a system of m linear equations in d variables w1, . . . , wd:

x1,1w1 + x1,2w2 + . . . x1,dwd = y1

x2,1w1 + x2,2w2 + . . . x2,dwd = y2

...

xm,1w1 + xm,2w2 + . . .+ xm,dwd = ym
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Systems of linear equations

These equations can be written compactly in matrix-vector notation:

Xw = y,

where

X =

x1,1 . . . x1,d

...
. . .

...
xm,1 . . . xm,d

 , w =

w1

...
wd

 , y =

 y1
...
ym

 .

Note: X is of m× d dimension.
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Systems of linear equations

(i) Square of even-determined system: m = d in Xw = y, X ∈ Rm×d

(equal number of equations and unknowns, i.e., X ∈ Rd×d)

If X is invertible (or X−1X = I), then pre-multiply both sides by X−1, we have

X−1Xw = X−1y

⇒ w = X−1y

If all rows or columns of X are linearly independent, then X is invertible.
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Systems of linear equations

Example w1 + w2 = 4 (1) Two unknowns and
w1 − 2w2 = 1 (2) two equations

[
1 1
1 −2

] [
w1

w2

]
=

[
4
1

]
X w y

w = X−1y

=

[
1 1
1 −2

]
−1

[
4
1

]
=

[
3
1

]

Here, the rows or columns of X are linearly independent, hence X is invert-
ible.
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Systems of linear equations

(ii)Over-determined system: m > d in Xw = y, X ∈ Rm×d

(i.e., there are more equations than unknowns)

This set of linear equations has NO exact solution (X is non-square and
hence not invertible). However, an approximated solution is yet avail-
able.

If the left-inverse of X exists such that X†X = I, then pre-multiply both
sides by X† results in

X†Xw = X†y

⇒ w = X†y

Definition: a matrix B that satisfies BA=I (identity matrix) is called a
left-inverse of A. (Note: A is m-by-d and B is d-by-m.

Note: The left-inverse can be computed as X† = (X⊤X)−1X⊤ given X⊤X
is invertible.
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Systems of linear equations

Example w1 + w2 = 1 (1) Two unknowns and
w1 − w2 = 0 (2) three equations

w1 = 2 (3)

1 1
1 −1
1 0

 [
w1

w2

]
=

10
2


X w y

This set of linear equations has NO
exact solution.

w = X†y = (X⊤X)−1X⊤y Here X⊤X is invertible.

=

[
3 0
0 2

]
−1

[
1 1 1
1 −1 0

]10
2

 =

[
1
0.5

]
(Approximation)
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Systems of linear equations

(iii)Under-determined system: m < d in Xw = y, X ∈ Rm×d

(i.e., there are more unknowns than equations ⇒ infinite number of solutions)

If the right-inverse of X exists such that XX† = I, then the d-vector
w = X†y (one of the infinite cases) satisfies the equation Xw = y, i.e.,

XX†y = y

⇒ y = y

Definition: a matrix B that satisfies AB=I (identity matrix) is called a
right-inverse of A. (Note: A is m-by-d and B is d-by-m).

Note: The right-inverse can be computed as X† = X⊤(XX⊤)−1 given
XX⊤ is invertible.
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Systems of linear equations

Derivation:

Under-determined system: m < d in Xw = y, X ∈ Rm×d

(i.e., there are more unknowns than equations ⇒ infinite number of solu-
tions ⇒ but a unique solution is yet possible by constraining the search
using w = X⊤a !)

If XX⊤ is invertible, let w = X⊤a, then

XX⊤a = y

⇒ a = (XX⊤)−1y

w = X⊤a = X⊤(XX⊤)−1︸ ︷︷ ︸y
X†
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Systems of linear equations

Example w1 + 2w2 + 3w3 = 2 (1) Three unknowns and
w1 − 2w2 + 3w3 = 1 (2) two equations

[
1 2 3
1 −2 3

] w1

w2

w3

 =

[
2
1

]
X w y

This set of linear equations has in-
finitely many solutions along the in-
tersection line.

w = X⊤(XX⊤)−1y Here XX⊤ is invertible.

=

1 1
2 −2
3 3

 [
14 6
6 14

]
−1

[
2
1

]
=

0.150.25
0.45

 (Constrained solution)
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Systems of linear equations

Example w1 + 2w2 + 3w3 = 2 (1) Three unknowns and
3w1 + 6w2 + 9w3 = 1 (2) two equations

[
1 2 3
3 6 9

] w1

w2

w3

 =

[
2
1

]
X w y

Here both XX⊤ and X⊤X are
NOT invertible!

There is NO solution for the
system.
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