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Definition and branches of machine learning

Figure: Machine learning is one of the most important branches of artificial intelligence.
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Basic concepts, learning process

Figure: How supervised learning works.

Figure: How unsupervised learning works.
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Random experiment, sample space, event

Random experiment: we describe a random experiment by its procedure
and observations of its outcomes. For example, we toss a coin 2 times,
and observe which side is up after each toss.

Sample space: All possible outcomes of the random experiment form a
sample space S. For the above coin toss example, we define

S = {(Head,Head), (Head, Tail), (Tail,Head), (Tail, Tail)}.

Event: A subset of sample space S, denoted as A, can be called as an event
in a random experiment, i.e., A ⊂ S. In the above example, we define an
event A as at least one head up, then it can be represented by

A = {(Head,Head), (Head, Tail), (Tail,Head)} ⊂ S.

.
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Probability of events

Assuming events A ⊂ S and B ⊂ S, the probabilities of events related with and
must satisfy,

P (A) ≥ 0

P (S) = 1

If A ∩B = ∅, then P (A ∪B) = P (A) + P (B);
otherwise, P (A ∪B) = P (A) + P (B)− P (A ∩B)

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning Lecture 02 Probability TheorySeptember 12/14, 2023 7 / 38



Random variables

A random variable is a real valued function from the sample space S to a
real space R, as follows:

X : S → R

Still take the 2-times coin toss as example, if we define the random variable
as the number of tails, then we have

X((H,H)) = 0, X((H,T )) = 1, X((T,H)) = 1, X((T, T )) = 2.

Then, the output space of X is denoted as {0, 1, 2}, also called state space
X .

There are two types of random variables:

Discrete: X is discrete
Continuous: X is continuous
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Exercises of Random variables

Exercise 1: For the random experiment of throwing a pair of dice, please
write down its sample space, and the event at least one number 3 on two
dice as well as its probability.

Exercise 2: For the above random experiment, we define the random
variable as the number summation of two dice, please write down its state
space.
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Probability of discrete random variables

Probability of discrete random variable describes the chance of each state
x in X for random variable X in a random experiment, denoted as

P (X = x), x ∈ X .

Exercise 1: If we assume the coin is fair in the random experiment of
2-times coin toss, i.e., P (Head) = P (Tail) = 1

2 for toss, please compute
the probability of different number of tails.
Exercise 2: For the random experiment of throwing a pair of dice, please
compute the probability of the state of 3 (i.e., the number summation of
two dice equals to 3).
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Joint, marginal, conditional probability

Probability of a union of two events: Given two events A and B, we define
the probability of A or B as follows:

P (A ∪B) = P (A) + P (B)− P (A ∩B), (1)

= P (A) + P (B) if A and B are mutually exclusive.

Joint probabilities: The probability of the joint event A and B is defined
as follows:

P (A,B) = P (A ∩B) = P (A|B)P (B) = P (B|A)P (A), (2)

It is called the product rule.

Marginal distribution: Given the above joint distribution, we can define
the marginal distribution as follows:

P (A) =
∑
b

P (A,B) =
∑
b

P (A|B = b)P (B = b), (3)

which sums over all possible states of B. It is called the sum rule.
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Conditional probability and Bayes rule

Conditional probability: Recalculating probability of event A after someone
tells you that event B happened, as follows:

P (A|B) =
P (A ∩B)

P (B)
(4)

P (A ∩B) = P (A|B)P (B) (5)

Bayes Rule: Combining the definition of conditional probability with the
product and sum rules yields Bayes rule, as follows:

P (B|A) =
P (A|B)P (B)

P (A)
, (6)

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
=

P (X = x)P (Y = y|X = x)∑
x′∈X P (X = x′)P (Y = y|X = x′)

.

(7)
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Application of Bayes rule: medical diagnosis

Suppose that you do a medical test for breast cancer, the test result could
be positive or negative. We denote x = 1 as the event of positive test, while
x = 0 as the event of negative test. We denote y = 1 as the event of having
breast cancer, while y = 0 as the event of no breast cancer.

Suppose that if one has breast cancer, the test will be positive with the
probability 0.8, i.e.,

P (x = 1|y = 1) = 0.8. (8)

Then, if one gets a positive test result, what is the probability of having
breast cancer? P (y = 1|x = 1) = 0.8?
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Application of Bayes rule: medical diagnosis

It is WRONG! It ignores the prior probability of having breast cancer.
According to statistics, the average risk of a woman in the United States
developing breast cancer sometime in her life is about 13%, i.e.,

P (y = 1) = 0.13. (9)

We also need to take into account the fact that the test may be a false
positive or false alarm. Unfortunately, such false positives are quite
likely (with current screening technology):

P (x = 1|y = 0) = 0.1. (10)

Combining all above probabilities using Bayes rule, we can compute

P (y = 1|x = 1) =
P (x = 1|y = 1)P (y = 1)

P (x = 1|y = 1)P (y = 1) + P (x = 1|y = 0)P (y = 0)

=
0.8× 0.13

0.8× 0.13 + 0.1× 0.87
= 0.5445. (11)

It tells that if you test positive, you have have about a 54% chance of really
having breast cancer!
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Independent random variables

Independent: If X and Y are independent, denoted as X ⊥ Y , then the
joint probability can be represented as the product of two marginals, i.e.,

X ⊥ Y ⇐⇒ P (X,Y ) = P (X)P (Y ). (12)

Given the above independence, we can use fewer parameters to define a
joint probability. Suppose that X has 3 states, Y has 4 states, then we
need 3 − 1 = 2 and 4 − 1 = 3 free parameters to define P (X) and P (Y ),
respectively.

If without the independence, how many free parameters do we need to
define the joint probability P (X,Y )? (3× 4)− 1 = 11.

If given the independence, i.e., P (X,Y ) = P (X)P (Y ), how many free
parameters do we need? (3− 1) + (4− 1) = 5.
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Expectation and variance of discrete random variables

Expectation (or mean): E(X) =
∑

x∈X xP (X = x)

Expectation of a function: E(f(X)) =
∑

x∈X f(x)P (X = x)

Moments: expectation of power of X: Mk = E(Xk)

Variance: Average (squared) fluctuation from the mean

Var(X) = E((X − E(X))2) = E(X2)− E(X)2 = M2 −M2
1 . (13)

Standard deviation: Square root of variance, i.e.,

Std =
√

Var(X). (14)

Exercise : For the random variable of the number of tails in the random
experiment of 2-times coin toss, please compute the above values.
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Continuous random variables

A random variable X is continuous if its state space X is uncountable.

In this case, P (X = x) = 0 for each x.

If pX(x) is a probability density function (PDF) for X, then

P (a < X < b) =

∫ b

a

p(x)dx (15)

P (a < X < a+ dx) ≈ p(a) · dx (16)

The cumulative distribution function (CDF) is FX(x) = P (X < x). We
have that pX(x) = F ′(x), and F (x) =

∫ x

−∞ p(s)ds.
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Bivariate continuous distributions: Marginalization,
Conditioning and Independence

pX,Y (x, y), joint probablity density function of X and Y∫
x

∫
y
p(x, y)dxdy = 1

Marginal distribution: p(x) =
∫∞
−∞ p(x, y)dy

Conditional distribution: p(x|y) = p(x,y)
p(y)

Note: P (Y = y) = 0! Formally, conditional probability in the continuous
case can be derived using infinitesimal events.

Independence: X and Y are independent if pX,Y (x, y) = pX(x)pY (y)
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Since the CDF F (·) is a monotonically increasing function, it has an inverse;
let us denote this by F−1(·).
If F (x) is the CDF of X, then F−1(α) is the value of xα such that P (X ≤
xα) = α; this is called the a quantile of F . The value F−1(0.5) is the
median of the distribution, with half of the probability mass on the left,
and half on the right. The values F−1(0.25) and F−1(0.75) are the lower
and upper quartiles.
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We can also use the inverse CDF to compute tail area probabilities.

For example, if Φ is the CDF of the Gaussian distribution N (0, 1), then
points to the left of Φ−1(α/2) contain α/2 probability mass. By symmetry,
points to the right of Φ−1(1− α/2) also contain α/2 probability mass.

Hence, the central interval (Φ−1(α/2),Φ−1(1−α/2)) contains 1−α of the
mass. If we set α = 0.05, the central 95% interval is covered by the range

(Φ−1(0.025),Φ−1(0.975)) = (−1.96, 1.96). (17)

For a Gaussian distribution N (µ, σ2), the central 95% interval is (µ −
1.96σ, µ+ 1.96σ).
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Expectation and variance of continuous random
variables

Similar to that of discrete random variables, only change the summation
∑

to
the integral

∫
.

Expectation (or mean ): µ = E(X) =
∫
X x · p(x)dx

Moments: expectation of power of X: Mk = E(Xk) =
∫
X xk · p(x)dx

Variance: Average (squared) fluctuation from the mean

Var(X) = E((X − E(X))2) = E(X2)− E(X)2 = M2 −M2
1 . (18)

Standard deviation: Square root of variance, i.e.,

Std =
√

Var(X). (19)
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Binary variables (discrete r.v.)

We firstly consider the probability of a binary random variable x ∈ {0, 1}.
Suppose that you toss a coin, and x = 1 denotes the event of ‘heads’, while
x = 0 indicates the event of ‘tails’.

The probability of x = 1 is described by a parameter µ,

p(x = 1|µ) = µ, (20)

where µ ∈ [0, 1], and we can obtain that p(x = 0|µ) = 1− µ.

The probability distribution over x can therefore be written in the form

Bern(x|µ) = µx(1− µ)1−x, (21)

which is called Bernoulli distribution.

Its mean and variance are

E[x] =
∑
x

xBern(x|µ) = µ, (22)

var[x] = E[(x− µ)2] = µ(1− µ) (23)
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Binomial variables

Imagine that you toss the coin N times, and each tossing follows the
Bernoulli distribution p(x|µ). We denote the variable m as the numbers of
heads, then its distribution is formulated as follows:

Bin(m|N,µ) =

(
N

m

)
µm(1− µ)N−m, (24)

which is called Binomial distribution, where(
N

m

)
=

N !

(N −m)!m!
. (25)

Its mean and variance are

E[m] =

N∑
m=0

mBin(m|N,µ) = Nµ, (26)

var[m] = E[(m−Nµ)2] = Nµ(1− µ). (27)
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Binomial distribution
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Gaussian distribution (continuous r.v.)

The Gaussian, also known as the normal distribution, is a widely used
model for the distribution of continuous variables. In the case of a single
variable x, the Gaussian distribution can be written in the form

N (x|µ, σ) = 1

(2πσ2)
1
2

exp

(
− (x− µ)2

2σ2

)
, (28)

where µ is the mean and σ2 is the variance.

For a D-dimensional vector x, the multivariate Gaussian distribution takes
the form

N (x|µ,Σ) =
1

(2π)
D
2 |Σ| 12

exp

(
− (x− µ)⊤Σ−1(x− µ)

2

)
, (29)

where µ is a D-dimensional mean vector, and Σ is a D×D covariance
matrix, and |Σ| denotes the determinant of Σ.
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What is information

To know what is information, we need to know a bit who is Claude Shannon
and his information theory let’s see a video: https://www.youtube.com/
watch?v=z7bVw7lMtUg

Shannon defined the measure that quantifies the uncertainty of an event
with given probability - a bit.

For a discrete random variable (a source) with finite alphabet, as follows

X = {x0, · · · , xk, · · ·xS},

where the probability of each symbol is given by P (X = xk) = pk.

We define the information as

I(xk) = log
1

pk
= − log(pk).

If logarithm is base 2, information is given in bits.

Note that I(xk) ≥ 0, i.e., non-negative. The equality only holds when
pk = 1, which means there is no uncertainty, then no information.
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What is information

Larger surprise/uncertainty, more information/bits.
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Entropy

Entropy is defined as the expected value of information from a source,

HP (X ) = E[I(xk)]

=
∑
xk∈X

pk · I(xk)

= −
∑
xk∈X

pk · log(pk).

Let X = {0, 1} be a binary source with p0 and p1 being the probability of
symbols x0 = 0 and x1 = 1, respectively, we have

HP (X ) = E[I(xk)]

= −p0 log p0 − p1 log p1

= −p0 log p0 − (1− p0) log (1− p0)
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Entropy of binary source
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Cross Entropy

Cross-entropy builds upon the idea of entropy. It calculates the number of
bits required to represent or transmit an average event from one distribution
P (X), compared to another distribution Q(X),

HP,Q(X ) = –
∑
xk∈X

P (X = xk) · log(Q(X = xk)),

where P (X = xk) is the probability of the event xk in P (X), Q(X = xk)
is the probability of event xk in Q(X).

Let X = {0, 1} be a binary source with p0 and p1 being the probability of
symbols x0 = 0 and x1 = 1, respectively, then we have

HP,Q(X ) = −p0 log q0 − p1 log q1

= −p0 log q0 − (1− p0) log (1− q0).
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Cross Entropy

There are two properties of cross-entropy:

It is a non-negative, i.e., HP,Q(X ) ≥ 0

Cross-entropy is not smaller than entropy, i.e., HP,Q(X ) ≥ HP (X ), and
the equality holds only when P = Q.

Exercise: Prove the above two properties

(hint: Jensen inequality and log(·) is concave)

Reference: https://machinelearningmastery.com/cross-entropy-for-machine-learning/
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Relative entropy: Kullback-Leibler divergence

The relative entropy between two continuous probability density functions
pX(x) and qX(x) is defined as follows

DP,Q(X ) =

∫
x∈X

pX(x) log
pX(x)

qX(x)
.

It is also called KL divergence, which measures the distance between two
distributions.
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Relative entropy: Kullback-Leibler divergence

Exercise 1: What is a KL divergence for a discrete r.v. ?

There are two properties of KL divergence:

Non-negativity: DP,Q(X ) ≥ 0
Asymmetry: DP,Q(X ) ̸= DQ,P (X )

Exercise 2: Prove the above two properties (hint: Jensen inequality

and log(·) is concave)

The cross-entropy HP,Q(X ) is the entropy of the distribution HP (X ) plus
the additional KL divergence DP,Q(X ).

HP,Q(X ) = HP (X ) +DP,Q(X )

Exercise 3: Can you prove the equality of the equation?

Reference:
https://machinelearningmastery.com/cross-entropy-for-machine-learning/

https://stats.stackexchange.com/questions/335197/why-kl-divergence-is-non-negative
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