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Definition and branches of machine learning
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Figure: Machine learning is one of the most important branches of artificial intelligence.




, learning pr

Traini Inference
raining (test)
N N
{xi}i=1 {yi},'='| X y
Known ‘ ‘
Trgir;ing (tlg;:ﬁér) Unseen Predicted
ata data label
Paralrgg’:(:;rs to Learned
parameters
Figure: How supervised learning works.
Training Inference
. (test)
{x; },' =1 X y
Training Control Unseen ‘ zsformed
data parameters data values
Parameters to Learned
learn parameters

Figure: How unsupervised learning works.

JIA, Kui School of Data Science, CUHK-DD/

0 Machine Learning Lecture 02

September 12/14,



© Probability, event, random variables




Random experiment, sample space, event

o Random experiment: we describe a random experiment by its procedure
and observations of its outcomes. For example, we toss a coin 2 times,
and observe which side is up after each toss.

e Sample space: All possible outcomes of the random experiment form a
sample space S. For the above coin toss example, we define

S = {(Head, Head), (Head, Tail), (Tail, Head), (Tail, Tail)}.

e Event: A subset of sample space S, denoted as A, can be called as an event
in a random experiment, i.e., A C S. In the above example, we define an
event A as at least one head up, then it can be represented by

A = {(Head, Head), (Head, Tail), (Tail, Head)} C S.
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Probability of events

Assuming events A C S and B C S, the probabilities of events related with and
must satisfy,

e P(A)>0

e P(S)=1

o If AN B =0, then P(AU B) = P(A) + P(B);
otherwise, P(AU B) = P(A) + P(B) — P(AN B)

Disjoint Events Overlapping Events
Event A: Get an odd Number Event A: Get a number over 4
Event B: Get a 6 Event B: Get an odd number
4
42 2

JIA, Kui School of Data Science, CUHKDDA3020 Machine Learning Lecture 02 September 12/14, -



Random variables

e A random variable is a real valued function from the sample space S to a
real space R, as follows:
X:9—=R

o Still take the 2-times coin toss as example, if we define the random variable
as the number of tails, then we have

Then, the output space of X is denoted as {0, 1,2}, also called state space
X.

@ There are two types of random variables:

o Discrete: X is discrete
o Continuous: X is continuous
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s of Random variables

@ Exercise 1: For the random experiment of throwing a pair of dice, please
write down its sample space, and the event at least one number & on two
dice as well as its probability.

@ Exercise 2: For the above random experiment, we define the random
variable as the number summation of two dice, please write down its state
space.
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@ Probability of discrete random variables




Probability of discrete random variables

@ Probability of discrete random variable describes the chance of each state
z in X for random variable X in a random experiment, denoted as

P(X =x),zeX.

@ Exercise 1: If we assume the coin is fair in the random experiment of
2-times coin toss, i.e., P(Head) = P(Tail) = % for toss, please compute
the probability of different number of tails.

@ Exercise 2: For the random experiment of throwing a pair of dice, please
compute the probability of the state of 3 (i.e., the number summation of
two dice equals to 3).
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Joint, marginal, conditional probability

e Probability of a union of two events: Given two events A and B, we define
the probability of A or B as follows:

P(AUB)=P(A)+P(B)—P(ANnB), (1)
= P(A) 4+ P(B) if A and B are mutually exclusive.

e Joint probabilities: The probability of the joint event A and B is defined
as follows:

P(A,B) = P(AN B) = P(A|B)P(B) = P(B|A)P(4),  (2)

It is called the product rule.

e Marginal distribution: Given the above joint distribution, we can define
the marginal distribution as follows:

P(A)=>_P(A,B)=> P(A|B=0b)P(B =), (3)
b b

which sums over all possible states of B. It is called the sum rule.
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Conditional probability and Bayes rule

e Conditional probability: Recalculating probability of event A after someone
tells you that event B happened, as follows:

PLlB) = T 0

P(AN B) = P(A|B)P(B) (5)

o Bayes Rule: Combining the definition of conditional probability with the
product and sum rules yields Bayes rule, as follows:

P(B|A) = T, ©
. . PX=2Y=y  PX=2)PY=yX=21)
PX=z|Y =y) = P(Y = y) _ZI/GXP(XZI/)P(Y:?AXZII)
(7)
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Application of Bayes rule: medical diagnosis

@ Suppose that you do a medical test for breast cancer, the test result could
be positive or negative. We denote x = 1 as the event of positive test, while
x = 0 as the event of negative test. We denote y = 1 as the event of having
breast cancer, while y = 0 as the event of no breast cancer.

@ Suppose that if one has breast cancer, the test will be positive with the
probability 0.8, i.e.,

Plz=1ly=1)=0.8. (8)

o Then, if one gets a positive test result, what is the probability of having
breast cancer? P(y = 1|z =1) =0.87
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Application of Bayes rule: medical diagnosis

o It is WRONG! It ignores the prior probability of having breast cancer.
@ According to statistics, the average risk of a woman in the United States
developing breast cancer sometime in her life is about 13%, i.e.,

P(y=1)=0.13. (9)

@ We also need to take into account the fact that the test may be a false
positive or false alarm. Unfortunately, such false positives are quite
likely (with current screening technology):

P(z =1y =0) = 0.1. (10)

e Combining all above probabilities using Bayes rule, we can compute

Plx=1y=1)Py=1)
Pz =1y =1)P(y=1)+ Pz =1y =0)P(y = 0)
0.8 x0.13

= = 0.5445. 11

0.8 x0.13+0.1 x0.87 (11)

It tells that if you test positive, you have have about a 54% chance of really
having breast cancer!

Ply=1lz=1)=
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Independent random variables

o Independent: If X and Y are independent, denoted as X | Y, then the
joint probability can be represented as the product of two marginals, i.e.,

X 1Y < P(X,Y) = P(X)P(Y). (12)

e Given the above independence, we can use fewer parameters to define a
joint probability. Suppose that X has 3 states, Y has 4 states, then we
need 3—1 =2 and 4 — 1 = 3 free parameters to define P(X) and P(Y),
respectively.

o If without the independence, how many free parameters do we need to
define the joint probability P(X,Y)? (3 x 4) — 1 =11.

o If given the independence, i.e., P(X,Y) = P(X)P(Y), how many free
parameters do we need? (3—1)+ (4—1) =5.
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Expectation and variance of discrete random variables

Expectation (or mean): E(X) =) ., oP(X =z)
Expectation of a function: E(f(X)) =3 .y f(z)P(X = x)
Moments: expectation of power of X: M = E(XF)

e Variance: Average (squared) fluctuation from the mean
Var(X) = E((X — E(X))?) = E(X?) — E(X)? = My — M. (13)
e Standard deviation: Square root of variance, i.e.,

Std = 4/ Var(X). (14)

@ Exercise : For the random variable of the number of tails in the random
experiment of 2-times coin toss, please compute the above values.
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@ Probability of continuous random variables
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Continuous random variables

A random variable X is continuous if its state space X’ is uncountable.

e In this case, P(X = z) = 0 for each z.
o If px(x) is a probability density function (PDF) for X, then
b
Pla< X <b)= / p(x)dx (15)
a
Pla < X <a+dx)~p(a)-dx (16)

e The cumulative distribution function (CDF) is Fx(z) = P(X < x). We
have that px (z) = F'(z), and F(z) = [*__ p(s)ds.
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Bivariate continuous distributions: Marginalization,

Conditioning and Independence

e px.y(z,y), joint probablity density function of X and YV’

o [ fp:z:,y drdy =1
e Marginal distribution: p(z f_
e Conditional distribution: p(x|y) pég(”;)’)

Note: P(Y = y) = 0! Formally, conditional probability in the continuous
case can be derived using infinitesimal events.

Independence: X and Y are independent if px y (z,y) = px (2)py (v)
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Quantiles

80f

60f
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e Since the CDF F(+) is a monotonically increasing function, it has an inverse;
let us denote this by F~1(-).

o If F(z) is the CDF of X, then F~!(«) is the value of x,, such that P(X <
To) = «; this is called the a quantile of F. The value F~1(0.5) is the
median of the distribution, with half of the probability mass on the left,
and half on the right. The values F~1(0.25) and F~1(0.75) are the lower
and upper quartiles.
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Quantiles

CDF

80|

60|

40|

a2 a2
20|

) EY 0 T 2 > (a/2) 0 »'(1-a/2)

@ We can also use the inverse CDF to compute tail area probabilities.

e For example, if ® is the CDF of the Gaussian distribution A(0,1), then
points to the left of ®~1(a/2) contain /2 probability mass. By symmetry,
points to the right of (1 — a/2) also contain a/2 probability mass.

o Hence, the central interval (®~!(a/2),®~1(1 — /2)) contains 1 — « of the
mass. If we set a = 0.05, the central 95% interval is covered by the range

(®71(0.025), ®71(0.975)) = (—1.96,1.96). (17)

For a Gaussian distribution N'(u,0?), the central 95% interval is (u —
1.960, 11 + 1.960).
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Expectation and variance of continuous random

variables

Similar to that of discrete random variables, only change the summation »_ to
the integral [.

e Expectation (or mean ): p= E(X) = [, z - p(z)dx
o Moments: expectation of power of X: My = E(X*) = [, ¥ - p(z)dx
@ Variance: Average (squared) fluctuation from the mean
Var(X) = E((X — E(X))?) = E(X?) — E(X)? = M, — M?. (18)

e Standard deviation: Square root of variance, i.e.,

Std = 4/ Var(X). (19)
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© Some common discrete distributions




Binary variables (discrete r.v.)

o We firstly consider the probability of a binary random variable x € {0,1}.
Suppose that you toss a coin, and = = 1 denotes the event of ‘heads’, while
x = 0 indicates the event of ‘tails’.

@ The probability of z = 1 is described by a parameter u,

plz =1|p) = p, (20)

where p € [0, 1], and we can obtain that p(x = 0|p) =1 — pu.

@ The probability distribution over x can therefore be written in the form
Bern(zlu) = u*(1 - p)' ", (21)

which is called Bernoulli distribution.

o ItS mean and variance are
Ela] = 3 aBern(alu) = 1, (22)

var[z] = E[(z — p)*] = p(1 — p) (23)
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Binomial variables

e Imagine that you toss the coin N times, and each tossing follows the
Bernoulli distribution p(z|u). We denote the variable m as the numbers of
heads, then its distribution is formulated as follows:

Bin(m ¥, ) = () )01 = (24)

which is called Binomial distribution, where

N N!
<m> (N —m)lm!’ (25)
o Its mean and variance are
N
E[m] = Y mBin(m|N,p) = Np, (26)
m=0
varlm] = E[(m — Npu)?] = Np(1 - p). (27)
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Binomial distribution

03— T T T — T T T T

0.2
Bin(m/|10,0.25)

0.1
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© Some common continuous distributions

Lectu 0



Gaussian distribution (continuous r.v.)

o The Gaussian, also known as the normal distribution, is a widely used
model for the distribution of continuous variables. In the case of a single
variable x, the Gaussian distribution can be written in the form

1 (z —p)?
= - 2
Nielpo) = o pemn (<70, (28)
where £ is the mean and o2 is the variance.

@ For a D-dimensional vector &, the multivariate Gaussian distribution takes
the form

- 1) TS (g —
N(mm,z):mexp<_( ”)22( “)), (29)

where p is a D-dimensional mean vector, and ¥ is a D x D covariance
matrix, and |X| denotes the determinant of X.
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@ Information theory




What is information

To know what is information, we need to know a bit who is Claude Shannon
and his information theory let’s see a video: https://www.youtube.com/
watch?v=z7bVw71MtUg

Shannon defined the measure that quantifies the uncertainty of an event
with given probability - a bit.

For a discrete random variable (a source) with finite alphabet, as follows
X: {xo’... ’$k7...xs}7

where the probability of each symbol is given by P(X = xy) = py.

We define the information as

1
I(zx) = log P — log(pu)-

If logarithm is base 2, information is given in bits.

Note that I(xy) > 0, i.e., non-negative. The equality only holds when
pr = 1, which means there is no uncertainty, then no information.
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What is information

o It represents the surprise of seeing the outcome (a highly probable
outcome is not surprising).

event | probability | surprise |

one equals one 1 0 bits

wrong guess on a 4-choice question 3/4 0.415 bits
correct guess on true-false question 1/2 1 bit
correct guess on a 4-choice question 1/4 2 bits

seven on a pair of dice 6/36 2.58 bits

win any prize at Euromilhdes 1/24 4.585 bits

win Euromilhdes Jackpot ~ 1/76 million | = 26 bits

gamma ray burst mass extinction today | < 2.7-10712 | > 38 bits

Larger surprise/uncertainty, more information/bits.
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o Entropy is defined as the expected value of information from a source,
Hp(X) = E[I(zy)]

= > pi- I()

rREX

= — ) - log(px).

T EX

e Let X = {0,1} be a binary source with py and p; being the probability of
symbols zg = 0 and x1 = 1, respectively, we have
Hp(X) = E[I(xy)]
= —pologpo — p1logpy
= —pologpo — (1 — po)log (1 — po)
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Entropy of binary source
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Cross Entropy

@ Cross-entropy builds upon the idea of entropy. It calculates the number of
bits required to represent or transmit an average event from one distribution
P(X), compared to another distribution Q(X),

Hpg(X)=- Y PX ) - log(Q(X = xy)),

rREX

where P(X = xy) is the probability of the event z; in P(X), Q(X = zy)
is the probability of event xj in Q(X).

o Let X = {0,1} be a binary source with py and p; being the probability of
symbols g = 0 and x1 = 1, respectively, then we have

Hpg(X) = —pologqo — p1log g1
—pologqo — (1 — po)log (1 — qo).
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Cross Entropy

There are two properties of cross-entropy:
o It is a non-negative, i.e., Hpo(X) >0

o Cross-entropy is not smaller than entropy, i.e., Hpo(X) > Hp(X), and
the equality holds only when P = Q.

Exercise: Prove the above two properties
(hint: Jensen inequality and log(-) is concave)

Reference: https://machinelearningmastery.com/cross-entropy-for-machine-learning/

arning Lectu


https://machinelearningmastery.com/cross-entropy-for-machine-learning/

Relative entropy: Kullback-Leibler divergence

o The relative entropy between two continuous probability density functions
px (z) and ¢x () is defined as follows

o It is also called KL divergence, which measures the distance between two
distributions.
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Relative entropy: Kullback-Leibler divergence

Exercise 1: What is a KL divergence for a discrete r.v. 7

There are two properties of KL divergence:

o Non-negativity: Dpq(X) >0

o Asymmetry: Dpo(X) # Dg,p(X)
@ Exercise 2: Prove the above two properties (hint: Jensen inequal
and log(-) is concave)

o The cross-entropy Hp g(X) is the entropy of the distribution Hp(X) plus
the additional KL divergence Dp o(X).

Hpo(X) = Hp(X) + Dpo(X)
@ Exercise 3: Can you prove the equality of the equation?
Reference:

https://machinelearningmastery.com/cross-entropy-for-machine-learning/
https://stats.stackexchange.com/questions/335197/why-kl-divergence-is-non-negative
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