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Preliminary: Projection onto a subspace

Given a dataset D = {x(1), . . . ,x(N)} with x(n) ∈ RD and D being the

original dimension. And we define the mean as µ = 1
N

∑N
n=1 x

(n) ∈ RD.

K-dimensional subspace S is spanned by an orthonormal basis {uk}Kk=1

with uk ∈ RD.

∥uk∥ = 1,∀k; u⊤
i uj = 0 if i ̸= j,∀i, j.

Approximate each data point x ∈ RD as:

x̃ = µ+ ProjS(x− µ) = µ+

K∑
k=1

zkuk,

where zk = u⊤
k (x−µ) can be seen as the projection length of x−µ on the

k-th basis uk.

Let U ∈ RD×K be a matrix with columns {uk}Kk=1, then we have

x̃ = µ+Uz ∈ RD, which is called reconstruction of x (1)

z = U⊤(x− µ) ∈ RK , which is called representation/code of x. (2)
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Preliminary: Projection onto a subspace

z = U⊤(x− µ)

In the above example, the blue point x ∈ R3 is projected onto a 2-
dimensional subspace S spanned by 2 basis vectors {u1,u2}. And, the
mean vector of all blue points µ ∈ R3 is set as the origin of S.
Through projection, each blue point x has a reconstruction x̃ ∈ R3, which
locates in S.
The coordinate value of x̃ in the new coordinate system {u1,u2} is repre-
sented by z ∈ R2.
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Preliminary: Projection onto a subspace

Theorem (Orthogonal theorem)

The vector x− x̃ is orthogonal to the subspace S, i.e.,

U⊤(x− x̃) = 0.

Proof:

Utilizing the definition of x̃, we have

x− x̃ = x− µ−Uz

Then, utilizing the definition of z and the orthonormality of U, we have

U⊤(x− x̃) = U⊤(x− µ)−U⊤Uz = z− z = 0.
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Dimensionality Reduction

Dimensionality reduction aims to find a low-dimensional data vector to
represent the original high-dimensional data vector.
It can be implemented by unsupervised learning method or supervised
learning method. In this lecture, we only introduce one typical unsuper-
vised dimensionality reduction method, called Principal Component Anal-
ysis (PCA).
There are several usages of dimensionality reduction, such as

Visualization (as shown below)
Alleviate overfitting
Reduce the computational cost
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Dimensionality Reduction

The dimensionality of some types of data
(e.g., the image) is very high.

As shown right, these colored images are
from ImageNet, and the shape is 224×224×
3. Then, each image can be represented by
a 150, 528-dimensional vector.

If the number of training data is not very
large, then the learned model is likely to
overfit, leading to poor performance on
testing data.

If we reduce the dimensionality before
learning, then the overfitting could be al-
leviated, and the computational cost in
learning will be reduced.
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Dimensionality Reduction

Dimensionality reduction:

Inputs: given a dataset D = {x(1), . . . ,x(N)} ⊂ RD, with D being the
original dimension.

Goal: find a K-dimensional (K < D) subspace S, which consists of K
orthonormal basis vectors {uk}Kk=1, and u⊤

i uj = 0 for i ̸= j, while u⊤
i ui =

1,∀i. When projecting all points in D onto S, it is desired that the structure
or property of the original data is well preserved.

Outputs: the basis vectors {uk}Kk=1, and a new representation D′ = {z(1),
. . . , z(N)} ⊂ RK .
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Motivation

In the above example, there is a 2-dimensional data setD = {x(1), . . . ,x(N)},
where x(n) ∈ R2.

We aim to find a one-dimensional sub-space S = {u1} ∈ R2, such that when
projecting each point x(n) onto this subspace, we obtain the corresponding
reconstruction x̃(n) and the representation z.

According to your intuition, which subspace is better, left or right?
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Derivation 1: maximal variance

Principal Component Analysis:

Given a datasetD = {x(1), . . . ,x(N)} ∈ RD, we want to find aK-dimensional
(K < D) subspace S, which consists of K orthonormal basis vectors
{uk}Kk=1, such that the variance of the reconstructions D̃ = {x̃(1), . . . , x̃(N)}
is maximal, i.e.,

max
U,U⊤U=I

1

N

∑N

n=1
∥x̃(n) − µ̃∥2, (3)

where µ̃ = 1
N

∑N
n=1 x̃

(n) denotes the mean of the reconstructions.

Utilizing the definitions of x̃(n) (Eq. 1) and z(n) (Eq. 2), it is easy to prove

µ̃ =
1

N

∑N

n=1
x̃(n) = µ+U(

1

N

∑N

n=1
z(n))

= µ+
1

N
UU⊤

∑N

n=1
(x(n) − µ) = µ (4)

Substitute it into (3), we have

max
U,U⊤U=I

1

N

∑N

n=1
∥x̃(n) − µ∥2, (5)
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Derivation 1: maximal variance

Principal Component Analysis:

Utilizing the definition x̃ = µ+Uz, the above problem can be reformulated
to

max
U,U⊤U=I

1

N

∑N

n=1
∥Uz(n)∥2 ≡ max

U,U⊤U=I

1

N

∑N

n=1
∥z(n)∥2. (6)

Substitute in the definition z = U⊤(x− µ), we have

max
U,U⊤U=I

1

N

∑N

n=1
∥U⊤(x− µ)∥2 (7)

≡ max
U,U⊤U=I

1

N

∑N

n=1
Trace

(
U⊤(x(n) − µ)(x(n) − µ)⊤U

)
. (8)
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Derivation 2: minimal reconstruction error

Principal Component Analysis:

Given a datasetD = {x(1), . . . ,x(N)} ∈ RD, we want to find aK-dimensional
(K < D) subspace S, which consists of K orthonormal basis vectors
{uk}Kk=1, such that the reconstruction loss between x and x̃ is minimized,
i.e.,

min
U,U⊤U=I

1

N

∑N

n=1
∥x(n) − x̃(n)∥2. (9)
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Two derivations are equivalent

Theorem

Problem (5) and Problem (9) are equivalent, i.e.,

max
U,U⊤U=I

1

N

∑N

n=1
∥x̃(n) − µ∥2 ≡ min

U,U⊤U=I

1

N

∑N

n=1
∥x(n) − x̃(n)∥2. (10)

Proof: By the Pythagorean Theorem, we have

1

N

N∑
n=1

||x̃(n) − µ||2︸ ︷︷ ︸
projected variance

+
1

N

N∑
n=1

||x(n) − x̃(n)||2︸ ︷︷ ︸
reconstruction error

=
1

N

N∑
n=1

||x(n) − µ||2︸ ︷︷ ︸
constant
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PCA algorithm

Until now, we have known that PCA aims to solve the following optimiza-
tion problem,

max
U,U⊤U=I

1

N

∑N

n=1
Trace

(
U⊤(x(n) − µ)(x(n) − µ)⊤U

)
. (11)

We define the empirical covariance matrix, as follows:

Σ =
1

N

∑N

n=1
(x(n) − µ)(x(n) − µ)⊤. (12)

Then, the above optimization can be reformulated as follows:

max
U

Trace
(
U⊤ΣU

)
=

∑K

k=1
u⊤
k Σuk, s.t. U⊤U = I. (13)
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PCA algorithm

The Lagrangian function is formulated as follows:

L(U,ΛK) = Trace
(
U⊤ΣU

)
+Trace

(
Λ⊤

K(I−U⊤U)
)
, (14)

where ΛK = diag([λ̂1, . . . , λ̂K ]) ∈ RK×K .

Then, its optimal solution should satisfy

∂L(U,ΛK)

∂U
= 2ΣU− 2UΛK = 0 (15)

⇒ Σuk = λ̂kuk, k = 1, . . . ,K. (16)

It implies that the optimal primal solution uk and the corresponding dual
optimal solution λ̂k are one of the eigenvectors and one of the eigenvalues
of Σ, which also satisfy the constraint U⊤U = I.

For matrix derivative, please refer to wikipedia:
https://en.wikipedia.org/wiki/Matrix_calculus
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PCA algorithm

Utilizing SVD decomposition, we have

Σ = QΛDQ⊤ =
∑D

i=1
λiqiq

⊤
i ,

where Q = [q1, . . . ,qD] ∈ RD×D with qi being the eigenvector corre-
sponding to the i-th largest eigenvalue λi, and ΛD = diag([λ1, . . . , λD])
with λ1 ≥ . . . ≥ λD.

Substitute into the objective function, we have∑K

k=1
u⊤
k Σuk =

∑K

k=1

∑D

i=1
λi(u

⊤
k qi) · (q⊤

i uk) =
∑

t∈T
λt,

where we utilize the property of eigenvectors (unit and orthogonal to each
other), and T ⊂ {1, . . . , D} with |T | = K denotes the index subset of K
picked eigenvalues.

It is obvious that we should pick the top-K eigenvalues. Correspondingly,
the first K columns of Q should be used as the optimal solution to U.
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PCA algorithm

One eigenvector corresponds to one of the basis vectors of the subspace
obtained by PCA.

One eigenvalue correspond to the variance of the projected points on one
basis vector (i.e., eigenvector). Larger eigenvalue indicates more informa-
tion about the original data.
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PCA algorithm

The variance/information of top-K eigenvectors (i.e., top-K principal com-
ponents) often takes a large percentage of the whole variance/information.

Abandon the remaining components will not lost too much information of
the data.
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PCA algorithm

The above derivation of the optimal solution is summarized as the following
steps:

Step 1: Calculate the empirical covariance matrix Σ = 1
N

∑N
n=1(x

(n) −
µ)(x(n) − µ)⊤

Step 2: Do SVD decomposition of Σ to obtain its D eigenvalues {λi}Di=1

and eigenvectors {qi}Di=1, and rank them from large to small according to
the eigenvalues.

Step 3: Pick the top-K eigenvectors to form the matrix U = [q1, . . . ,qK ] ∈
RD×K

Step 4: The new representation of x(n) is U⊤(x(n) − µ).
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Examples

Suppose that we have a set of 5 points in 2-dimensional space

X =

(
−1 −1 0 2 0
−2 0 0 1 1

)
,

of which the mean column vector is µ =

[
0
0

]
.

We calculate its covariance matrix as

Σ =
1

5
XX⊤ =

1

5

(
6 4
4 6

)
.
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Examples

SVD decomposition: we obtain

q1 =

[
1√
2
1√
2

]
, q2 =

[
− 1√

2
1√
2

]
, λ1 = 2, λ2 =

2

5
.

Thus, we set U = q1

The new representation is U⊤X =
(

−3√
2

−1√
2

0 3√
2

−1√
2

)
.

Reference:
Demo with code: https://zhuanlan.zhihu.com/p/37777074
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Decorrelation of the new representation

Interesting property: the dimensions of z are decorrelated. For now, let
Cov denote the empirical covariance.

Cov(z) = Cov(UT (x− µ))

= UTCov(x)U

= UTΣU

= UTQΛQTU

=
(
I 0

)
Λ

(
I
0

)
by orthogonality

= top left K ×K block of Λ

If the covariance matrix is diagonal, this means the features are uncorre-
lated.
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Recap of PCA

Dimensionality reduction aims to find a low-dimensional representation of
the data.

PCA projects the data onto a subspace which maximizes the projected
variance, or equivalently, minimizes the reconstruction error.

The optimal subspace is given by the top eigenvectors of the empirical
covariance matrix.

PCA gives a set of decorrelated features.
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Applying PCA to faces

Consider running PCA on 2429 19 × 19 grayscale facial images (CBCL
data), and each image is represented by a 361-dimensional column vector

After running PCA, we can obtain several eigenfaces. With only top-3
eigenfaces, we achieve 79% accuracy on face/non-face discrimination on
test data.
We visualize the first 60 eigenvectors to the original shape, as follows:

Reference:
Wikipedia: https://en.wikipedia.org/

wiki/Eigenface

Demo with code: https://

scikit-learn.org/stable/auto_

examples/applications/plot_face_

recognition.html
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Applying PCA to faces: Learned basis

Principal components of face images (“eigenfaces”)
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Applying PCA to digits

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning: Lecture 17 Principal Component AnalysisNovember 28, 2022 34 / 36



Further readings

Note that PCA is an orthogonal linear transforma-
tion method, thus it cannot handle non-linear data.
There are some interesting variants of PCA, such as

Kernel PCA: see Chapter 12.3 of Bishop’s book
(Link)

Probabilistic PCA: see Chapter 12.2 of
Bishop’s book

Nonlinear PCA: see http://www.nlpca.org/

Robust PCA: see https://en.wikipedia.

org/wiki/Robust_principal_component_

analysis
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