DDA3020 Machine Learning: Lecture 17 Principal Component Analysis

JIA, Kui School of Data Science, CUHK-SZ

November 28, 2022

1 Preliminary

2 Dimensionality Reduction

⁽³⁾ Derivations of Principal Component Analysis

- Motivation
- Derivation 1
- Derivation 2

Principal Component Analysis Algorithm

2 Dimensionality Reduction

3 Derivations of Principal Component Analysis

- Motivation
- Derivation 1
- Derivation 2

Principal Component Analysis Algorithm

Preliminary: Projection onto a subspace

- Given a dataset $\mathcal{D} = {\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}}$ with $\mathbf{x}^{(n)} \in \mathbb{R}^D$ and D being the original dimension. And we define the mean as $\boldsymbol{\mu} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)} \in \mathbb{R}^D$.
- K-dimensional subspace S is spanned by an orthonormal basis $\{\mathbf{u}_k\}_{k=1}^K$ with $\mathbf{u}_k \in \mathbb{R}^D$.
- $\|\mathbf{u}_k\| = 1, \forall k; \mathbf{u}_i^\top \mathbf{u}_j = 0 \text{ if } i \neq j, \forall i, j.$
- Approximate each data point $\mathbf{x} \in \mathbb{R}^D$ as:

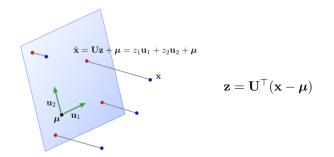
$$\tilde{\mathbf{x}} = \boldsymbol{\mu} + \operatorname{Proj}_{\mathcal{S}}(\mathbf{x} - \boldsymbol{\mu}) = \boldsymbol{\mu} + \sum_{k=1}^{K} z_k \mathbf{u}_k,$$

where $z_k = \mathbf{u}_k^\top (\mathbf{x} - \boldsymbol{\mu})$ can be seen as the projection length of $\mathbf{x} - \boldsymbol{\mu}$ on the *k*-th basis \mathbf{u}_k .

• Let $\mathbf{U} \in \mathbb{R}^{D \times K}$ be a matrix with columns $\{\mathbf{u}_k\}_{k=1}^K$, then we have

$$\tilde{\mathbf{x}} = \boldsymbol{\mu} + \mathbf{U}\mathbf{z} \in \mathbb{R}^{D}, \text{ which is called reconstruction of } \mathbf{x}$$
(1)
$$\mathbf{z} = \mathbf{U}^{\top}(\mathbf{x} - \boldsymbol{\mu}) \in \mathbb{R}^{K}, \text{ which is called representation/code of } \mathbf{x}.$$
(2)

Preliminary: Projection onto a subspace



- In the above example, the blue point $\mathbf{x} \in \mathbb{R}^3$ is projected onto a 2dimensional subspace S spanned by 2 basis vectors $\{\mathbf{u}_1, \mathbf{u}_2\}$. And, the mean vector of all blue points $\boldsymbol{\mu} \in \mathbb{R}^3$ is set as the origin of S.
- Through projection, each blue point \mathbf{x} has a reconstruction $\tilde{\mathbf{x}} \in \mathbb{R}^3$, which locates in S.
- The coordinate value of $\tilde{\mathbf{x}}$ in the new coordinate system $\{\mathbf{u}_1, \mathbf{u}_2\}$ is represented by $\mathbf{z} \in \mathbb{R}^2$.

Theorem (Orthogonal theorem)

The vector $\mathbf{x} - \tilde{\mathbf{x}}$ is orthogonal to the subspace S, i.e.,

 $\mathbf{U}^{\top}(\mathbf{x} - \tilde{\mathbf{x}}) = \mathbf{0}.$

Proof:

• Utilizing the definition of $\tilde{\mathbf{x}}$, we have

$$\mathbf{x} - \tilde{\mathbf{x}} = \mathbf{x} - \boldsymbol{\mu} - \mathbf{U}\mathbf{z}$$

 $\bullet\,$ Then, utilizing the definition of ${\bf z}$ and the orthonormality of ${\bf U},$ we have

$$\mathbf{U}^{\top}(\mathbf{x} - \tilde{\mathbf{x}}) = \mathbf{U}^{\top}(\mathbf{x} - \boldsymbol{\mu}) - \mathbf{U}^{\top}\mathbf{U}\mathbf{z} = \mathbf{z} - \mathbf{z} = \mathbf{0}.$$

Preliminary

2 Dimensionality Reduction

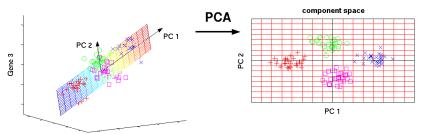
3 Derivations of Principal Component Analysis

- Motivation
- Derivation 1
- Derivation 2

Principal Component Analysis Algorithm

Dimensionality Reduction

- Dimensionality reduction aims to find a low-dimensional data vector to represent the original high-dimensional data vector.
- It can be implemented by **unsupervised learning** method or **supervised learning** method. In this lecture, we only introduce one typical unsupervised dimensionality reduction method, called Principal Component Analysis (PCA).
- There are several usages of dimensionality reduction, such as
 - Visualization (as shown below)
 - Alleviate overfitting
 - Reduce the computational cost



original data space

Dimensionality Reduction

- The dimensionality of some types of data (*e.g.*, the image) is very high.
- As shown right, these colored images are from ImageNet, and the shape is 224×224×
 3. Then, each image can be represented by a 150, 528-dimensional vector.
- If the number of training data is not very large, then the learned model is likely to overfit, leading to poor performance on testing data.
- If we reduce the dimensionality before learning, then the overfitting could be alleviated, and the computational cost in learning will be reduced.

Dimensionality reduction:

- Inputs: given a dataset $\mathcal{D} = {\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}} \subset \mathbb{R}^D$, with D being the original dimension.
- Goal: find a K-dimensional (K < D) subspace S, which consists of K orthonormal basis vectors $\{\mathbf{u}_k\}_{k=1}^K$, and $\mathbf{u}_i^{\top}\mathbf{u}_j = 0$ for $i \neq j$, while $\mathbf{u}_i^{\top}\mathbf{u}_i = 1, \forall i$. When projecting all points in \mathcal{D} onto S, it is desired that the structure or property of the original data is well preserved.
- Outputs: the basis vectors $\{\mathbf{u}_k\}_{k=1}^K$, and a new representation $\mathcal{D}' = \{\mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(N)}\} \subset \mathbb{R}^K$.

1 Preliminary

2 Dimensionality Reduction

³ Derivations of Principal Component Analysis

- Motivation
- Derivation 1
- Derivation 2

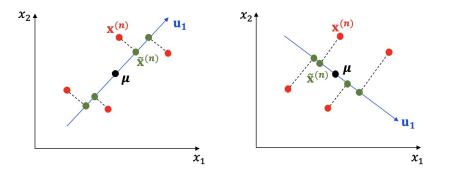
Principal Component Analysis Algorithm

2 Dimensionality Reduction

Berivations of Principal Component Analysis Motivation

- Derivation 1
- Derivation 2

Principal Component Analysis Algorithm



- In the above example, there is a 2-dimensional data set $\mathcal{D} = {\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}}$, where $\mathbf{x}^{(n)} \in \mathbb{R}^2$.
- We aim to find a one-dimensional sub-space $S = {\mathbf{u}_1} \in \mathbb{R}^2$, such that when projecting each point $\mathbf{x}^{(n)}$ onto this subspace, we obtain the corresponding reconstruction $\tilde{\mathbf{x}}^{(n)}$ and the representation z.
- According to your intuition, which subspace is better, left or right?

2 Dimensionality Reduction

3 Derivations of Principal Component Analysis

- Motivation
- Derivation 1
- Derivation 2

Principal Component Analysis Algorithm

Derivation 1: maximal variance

Principal Component Analysis:

• Given a dataset $\mathcal{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\} \in \mathbb{R}^D$, we want to find a *K*-dimensional (K < D) subspace \mathcal{S} , which consists of *K* orthonormal basis vectors $\{\mathbf{u}_k\}_{k=1}^K$, such that the variance of the reconstructions $\tilde{\mathcal{D}} = \{\tilde{\mathbf{x}}^{(1)}, \dots, \tilde{\mathbf{x}}^{(N)}\}$ is maximal, *i.e.*,

$$\max_{\mathbf{U},\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}}\frac{1}{N}\sum_{n=1}^{N}\|\tilde{\mathbf{x}}^{(n)}-\tilde{\boldsymbol{\mu}}\|^{2},\tag{3}$$

where $\tilde{\boldsymbol{\mu}} = \frac{1}{N} \sum_{n=1}^{N} \tilde{\mathbf{x}}^{(n)}$ denotes the mean of the reconstructions.

• Utilizing the definitions of $\tilde{\mathbf{x}}^{(n)}$ (Eq. 1) and $\mathbf{z}^{(n)}$ (Eq. 2), it is easy to prove

$$\tilde{\boldsymbol{\mu}} = \frac{1}{N} \sum_{n=1}^{N} \tilde{\mathbf{x}}^{(n)} = \boldsymbol{\mu} + \mathbf{U}(\frac{1}{N} \sum_{n=1}^{N} \mathbf{z}^{(n)})$$
$$= \boldsymbol{\mu} + \frac{1}{N} \mathbf{U} \mathbf{U}^{\top} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \boldsymbol{\mu}) = \boldsymbol{\mu}$$
(4)

• Substitute it into (3), we have

$$\max_{\mathbf{U},\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}} \frac{1}{N} \sum_{n=1}^{N} \|\tilde{\mathbf{x}}^{(n)} - \boldsymbol{\mu}\|^2,$$
 (5)

Principal Component Analysis:

• Utilizing the definition $\tilde{\mathbf{x}} = \boldsymbol{\mu} + \mathbf{U}\mathbf{z}$, the above problem can be reformulated to

$$\max_{\mathbf{U},\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}} \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{U}\mathbf{z}^{(n)}\|^2 \equiv \max_{\mathbf{U},\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}} \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{z}^{(n)}\|^2.$$
(6)

• Substitute in the definition $\mathbf{z} = \mathbf{U}^{\top}(\mathbf{x} - \boldsymbol{\mu})$, we have

$$\max_{\mathbf{U},\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}} \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{U}^{\top}(\mathbf{x}-\boldsymbol{\mu})\|^2$$
(7)

$$\equiv \max_{\mathbf{U},\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}} \frac{1}{N} \sum_{n=1}^{N} \operatorname{Trace} \left(\mathbf{U}^{\top} (\mathbf{x}^{(n)} - \boldsymbol{\mu}) (\mathbf{x}^{(n)} - \boldsymbol{\mu})^{\top} \mathbf{U} \right).$$
(8)

2 Dimensionality Reduction

3 Derivations of Principal Component Analysis

- Motivation
- Derivation 1
- Derivation 2

Principal Component Analysis Algorithm

Principal Component Analysis:

• Given a dataset $\mathcal{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\} \in \mathbb{R}^D$, we want to find a *K*-dimensional (K < D) subspace \mathcal{S} , which consists of *K* orthonormal basis vectors $\{\mathbf{u}_k\}_{k=1}^K$, such that the reconstruction loss between \mathbf{x} and $\tilde{\mathbf{x}}$ is minimized, *i.e.*,

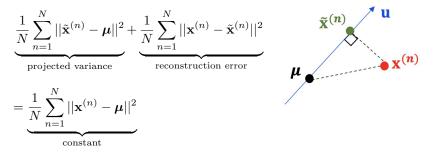
$$\min_{\mathbf{U},\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}} \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}^{(n)} - \tilde{\mathbf{x}}^{(n)}\|^2.$$
(9)

Theorem

Problem (5) and Problem (9) are equivalent, i.e.,

$$\max_{\mathbf{U},\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}} \frac{1}{N} \sum_{n=1}^{N} \|\tilde{\mathbf{x}}^{(n)} - \boldsymbol{\mu}\|^2 \equiv \min_{\mathbf{U},\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}} \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}^{(n)} - \tilde{\mathbf{x}}^{(n)}\|^2.$$
(10)

Proof: By the Pythagorean Theorem, we have



Preliminary

2 Dimensionality Reduction

3 Derivations of Principal Component Analysis

- Motivation
- Derivation 1
- Derivation 2

Principal Component Analysis Algorithm

• Until now, we have known that PCA aims to solve the following optimization problem,

$$\max_{\mathbf{U},\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}} \frac{1}{N} \sum_{n=1}^{N} \operatorname{Trace} \left(\mathbf{U}^{\top} (\mathbf{x}^{(n)} - \boldsymbol{\mu}) (\mathbf{x}^{(n)} - \boldsymbol{\mu})^{\top} \mathbf{U} \right).$$
(11)

• We define the empirical covariance matrix, as follows:

$$\boldsymbol{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \boldsymbol{\mu}) (\mathbf{x}^{(n)} - \boldsymbol{\mu})^{\top}.$$
 (12)

• Then, the above optimization can be reformulated as follows:

$$\max_{\mathbf{U}} \operatorname{Trace}(\mathbf{U}^{\top} \boldsymbol{\Sigma} \mathbf{U}) = \sum_{k=1}^{K} \mathbf{u}_{k}^{\top} \boldsymbol{\Sigma} \mathbf{u}_{k}, \text{ s.t. } \mathbf{U}^{\top} \mathbf{U} = \mathbf{I}.$$
(13)

PCA algorithm

• The Lagrangian function is formulated as follows:

$$L(\mathbf{U}, \mathbf{\Lambda}_K) = \operatorname{Trace} \left(\mathbf{U}^{\top} \mathbf{\Sigma} \mathbf{U} \right) + \operatorname{Trace} \left(\mathbf{\Lambda}_K^{\top} (\mathbf{I} - \mathbf{U}^{\top} \mathbf{U}) \right), \qquad (14)$$

where $\mathbf{\Lambda}_K = \operatorname{diag}([\hat{\lambda}_1, \dots, \hat{\lambda}_K]) \in \mathbb{R}^{K \times K}.$

• Then, its optimal solution should satisfy

$$\frac{\partial L(\mathbf{U}, \mathbf{\Lambda}_K)}{\partial \mathbf{U}} = 2\mathbf{\Sigma}\mathbf{U} - 2\mathbf{U}\mathbf{\Lambda}_K = \mathbf{0}$$
(15)

$$\Rightarrow \Sigma \mathbf{u}_k = \hat{\lambda}_k \mathbf{u}_k, \ k = 1, \dots, K.$$
(16)

• It implies that the optimal primal solution \mathbf{u}_k and the corresponding dual optimal solution $\hat{\lambda}_k$ are one of the eigenvectors and one of the eigenvalues of $\boldsymbol{\Sigma}$, which also satisfy the constraint $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}$.

For matrix derivative, please refer to wikipedia: https://en.wikipedia.org/wiki/Matrix_calculus • Utilizing SVD decomposition, we have

$$\mathbf{\Sigma} = \mathbf{Q} \mathbf{\Lambda}_D \mathbf{Q}^{ op} = \sum_{i=1}^D \lambda_i \mathbf{q}_i \mathbf{q}_i^{ op},$$

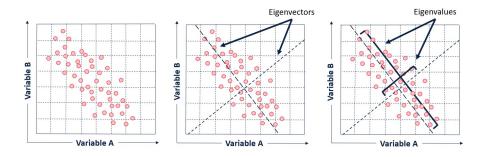
where $\mathbf{Q} = [\mathbf{q}_1, \ldots, \mathbf{q}_D] \in \mathbb{R}^{D \times D}$ with \mathbf{q}_i being the eigenvector corresponding to the *i*-th largest eigenvalue λ_i , and $\mathbf{\Lambda}_D = \text{diag}([\lambda_1, \ldots, \lambda_D])$ with $\lambda_1 \geq \ldots \geq \lambda_D$.

• Substitute into the objective function, we have

$$\sum_{k=1}^{K} \mathbf{u}_{k}^{\top} \boldsymbol{\Sigma} \mathbf{u}_{k} = \sum_{k=1}^{K} \sum_{i=1}^{D} \lambda_{i} (\mathbf{u}_{k}^{\top} \mathbf{q}_{i}) \cdot (\mathbf{q}_{i}^{\top} \mathbf{u}_{k}) = \sum_{t \in T} \lambda_{t},$$

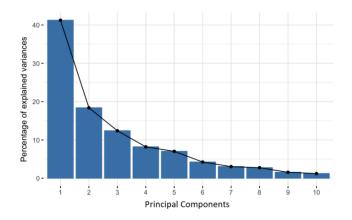
where we utilize the property of eigenvectors (unit and orthogonal to each other), and $T \subset \{1, \ldots, D\}$ with |T| = K denotes the index subset of K picked eigenvalues.

• It is obvious that we should pick the top-K eigenvalues. Correspondingly, the first K columns of \mathbf{Q} should be used as the optimal solution to \mathbf{U} .



- One eigenvector corresponds to one of the basis vectors of the subspace obtained by PCA.
- One eigenvalue correspond to the variance of the projected points on one basis vector (*i.e.*, eigenvector). Larger eigenvalue indicates more information about the original data.

PCA algorithm



- The variance/information of top-K eigenvectors (*i.e.*, top-K principal components) often takes a large percentage of the whole variance/information.
- Abandon the remaining components will not lost too much information of the data.

The above derivation of the optimal solution is summarized as the following steps:

- Step 1: Calculate the empirical covariance matrix $\Sigma = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} \boldsymbol{\mu})^{\top}$
- Step 2: Do SVD decomposition of Σ to obtain its D eigenvalues $\{\lambda_i\}_{i=1}^{D}$ and eigenvectors $\{\mathbf{q}_i\}_{i=1}^{D}$, and rank them from large to small according to the eigenvalues.
- Step 3: Pick the top-K eigenvectors to form the matrix $\mathbf{U} = [\mathbf{q}_1, \dots, \mathbf{q}_K] \in \mathbb{R}^{D \times K}$
- Step 4: The new representation of $\mathbf{x}^{(n)}$ is $\mathbf{U}^{\top}(\mathbf{x}^{(n)} \boldsymbol{\mu})$.

Examples

• Suppose that we have a set of 5 points in 2-dimensional space

$$X = \begin{pmatrix} -1 & -1 & 0 & 2 & 0 \\ -2 & 0 & 0 & 1 & 1 \end{pmatrix},$$

of which the mean column vector is $\boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

• We calculate its covariance matrix as

$$\Sigma = \frac{1}{5}XX^{\top} = \frac{1}{5}\begin{pmatrix} 6 & 4\\ 4 & 6 \end{pmatrix}.$$

• SVD decomposition: we obtain

$$\mathbf{q}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \ \mathbf{q}_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \ \lambda_1 = 2, \ \lambda_2 = \frac{2}{5}.$$

• Thus, we set
$$\mathbf{U} = \mathbf{q}_1$$

• The new representation is $\mathbf{U}^{\top}X = \begin{pmatrix} -3 & -1 \\ \sqrt{2} & \sqrt{2} & 0 & \frac{3}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$.

Reference: Demo with code: https://zhuanlan.zhihu.com/p/37777074 • Interesting property: the dimensions of z are decorrelated. For now, let Cov denote the empirical covariance.

$$Cov(\mathbf{z}) = Cov(\mathbf{U}^{T}(\mathbf{x} - \boldsymbol{\mu}))$$

= $\mathbf{U}^{T}Cov(\mathbf{x})\mathbf{U}$
= $\mathbf{U}^{T}\boldsymbol{\Sigma}\mathbf{U}$
= $\mathbf{U}^{T}\mathbf{Q}\boldsymbol{\Lambda}\mathbf{Q}^{T}\mathbf{U}$
= $(\mathbf{I} \quad 0)\boldsymbol{\Lambda}\begin{pmatrix}\mathbf{I}\\0\end{pmatrix}$ by orthogonality
= top left $K \times K$ block of $\boldsymbol{\Lambda}$

• If the covariance matrix is diagonal, this means the features are uncorrelated.

- Dimensionality reduction aims to find a low-dimensional representation of the data.
- PCA projects the data onto a subspace which maximizes the projected variance, or equivalently, minimizes the reconstruction error.
- The optimal subspace is given by the top eigenvectors of the empirical covariance matrix.
- PCA gives a set of decorrelated features.

Preliminary

2 Dimensionality Reduction

3 Derivations of Principal Component Analysis

- Motivation
- Derivation 1
- Derivation 2

Principal Component Analysis Algorithm

Applying PCA to faces

• Consider running PCA on 2429 19×19 grayscale facial images (CBCL data), and each image is represented by a 361-dimensional column vector

- After running PCA, we can obtain several eigenfaces. With only top-3 eigenfaces, we achieve 79% accuracy on face/non-face discrimination on test data.
- We visualize the first 60 eigenvectors to the original shape, as follows:

Reference:

- Wikipedia: https://en.wikipedia.org/ wiki/Eigenface
- Demo with code: https:// scikit-learn.org/stable/auto_ examples/applications/plot_face_ recognition.html

Applying PCA to faces: Learned basis

Principal components of face images ("eigenfaces")

Applying PCA to digits

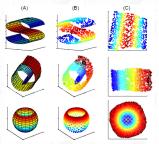
33333 reconstructed with 100 bases reconstructed with 506 bases **333**33 33333 mean principal basis 1 3 3 3 3 **3** 333333 principal basis 2 principal basis 3

reconstructed with 10 bases

reconstructed with 2 bases

Note that PCA is an orthogonal linear transformation method, thus it cannot handle non-linear data. There are some interesting variants of PCA, such as

- Kernel PCA: see Chapter 12.3 of Bishop's book (<u>Link</u>)
- Probabilistic PCA: see Chapter 12.2 of Bishop's book
- Nonlinear PCA: see http://www.nlpca.org/
- Robust PCA: see https://en.wikipedia. org/wiki/Robust_principal_component_ analysis



Please take 5 mins to finish CTE, thanks. Link: https://octe.cuhk.edu.cn/a/login

