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EM for GMM Clustering

Last time: We have introduced EM algorithm as a way of fitting a Gaussian
Mixture Model for clustering

E-step: Compute probability each datapoint came from certain cluster,
given model parameters

M-step: Adjust parameters of each cluster to maximize probability it would
generate data it is currently responsible for

This lecture: derive EM from principled approach and see how EM can be
applied to general latent variable models
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Latent Variable Models

Recall: variables which are always unobserved are called latent variables
or sometimes hidden variables

In a mixture model, the identity of the component that generated a given
datapoint is a latent variable

Why use latent variables if introducing them complicates learning?

We can build a complex model out of simple parts - this can simplify the
description of the model

We can sometimes use the latent variables as a representation of the original
data (e.g. cluster assignments in a GMM model)

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning: Lecture 16 Expectation MaximizationNovember 21, 2023 5 / 32



1 Recall

2 Preliminaries: Jensen’s Inequality

3 EM for Latent Variable Models

4 EM for Gaussian Mixture Models

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning: Lecture 16 Expectation MaximizationNovember 21, 2023 6 / 32



Preliminaries: Convex and Concave Functions

Theorem 1: Suppose f is a convex function, for any two input points x
and y, as well as any scalar value α ∈ [0, 1], we have

f
(
αx+ (1− α)y

)
≤ αf(x) + (1− α)f(y).

Theorem 2: Suppose f is a concave function, for any two input points x
and y, as well as any scalar value α ∈ [0, 1], we have

f
(
αx+ (1− α)y

)
≥ αf(x) + (1− α)f(y).
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Preliminaries: Jensen’s Inequality

The above theorems can be extended to Jensen’s Inequality.

Theorem (Jensen’s Inequality)

Suppose f is a convex function, and X is a random variable, then we have

f(E[X]) ≤ E[f(X)].

If f is a concave function, then we have

f(E[X]) ≥ E[f(X)].

When the equality holds?

X has a unique state

f is not strongly convex/concave

Try to prove the above theorem and claims by yourself. (Hint: using mathe-
matical induction to prove)

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning: Lecture 16 Expectation MaximizationNovember 21, 2023 8 / 32



Preliminaries: Jensen’s Inequality

For example, as shown in the right fig-
ure, f is a convex fucntion, and there
are four candidate states of X, i.e.,
x1, x2, x3, x4. Given any setting of the
probability distribution (i.e., P (X =
xi) = αi), it always has

f(
∑4

i=1
αixi) ≤

∑4

i=1
αif(xi).
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Notations of Latent Variable Models

In this lecture, we’ll be using x to denote observed data and z to denote
the latent variables

We assume we have an observed dataset D =
{
x(n)

}N
n=1

and would like to
fit θ using maximum log likelihood:

log p(D;θ) =

N∑
n=1

log p
(
x(n);θ

)
To compute p(x;θ), we have to marginalize over z:

p(x;θ) =
∑
z

p(z,x;θ),

where p(z,x;θ) denotes the probabilistic model we should define. Note
that

Anything following a semicolon denotes a parameter of the distribution
We’re not treating the parameters as random variables
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Difficulty of Fitting Latent Variable Models

Typically, there is no closed form solution to the maximum likelihood prob-
lem

log p(D;θ) =

N∑
n=1

log p
(
x(n);θ

)
=

N∑
n=1

log

(∑
z(n)

p
(
z(n),x(n);θ

))
.

Key difficulty: once z is marginalized out, p(x; θ) could be complex (e.g.,
a mixture distribution).

As shown in GMM (see last slides), if our objective is in terms of log p(z,x;θ),
which can be fully decomposed, then the optimization is very simple.

To accomplish this, we need to move the summation outside the log.
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Auxiliary Distribution of Latent Variables

We firstly introduce a new distribution w.r.t. each latent variable z(n),
denoted as qn(z

(n)).

We assume that the distributions w.r.t. different latent variables could be
different, and they are independent, i.e.,

q(z) =
∏N

n=1
qn(z

(n)).

Note that here we don’t specify the parameter value of qn(z
(n)), which will

be learned later. And, be careful that

qn(z
(n)) ̸= p(z;π).
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Decomposition of Log Likelihood

We start from one pair of observed and latent variables, i.e., {x, z}. Uti-
lizing q(z), we have

ln p(x;θ) = Eq(z)

[
ln

(
p(x;θ) · q(z)

q(z)

)]
= Eq(z)

[
ln

(
p(x, z;θ)

q(z)
· q(z)

p(z|x;θ)

)]
= Eq(z)

[
ln

(
p(x, z;θ)

q(z)

)]
+ Eq(z)

[
ln

(
q(z)

p(z|x;θ)

)]
It is natural to extend the above decomposition to the log likelihood of the
whole data set D, i.e.,

ln p(D;θ) =
∑N

n=1
Eqn(z(n))

[
ln

(
p(x(n), z(n);θ)

qn(z(n))

)]
+
∑N

n=1
Eqn(z(n))

[
ln

(
qn(z

(n))

p(z(n)|x(n);θ)

)]
=L(q;θ) + KL

(
q(z)||p(z|D;θ)

)
(1)

Note that the summation over the latent variable (i.e., Eq(z)) is out of log
in both L(q;θ) and KL(q(z)||p(z|D;θ)).
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Decomposition of Log Likelihood

Theorem

ln p(D;θ) ≥ L(q;θ), ∀q,θ.

Proof 1: Since ln(·) is concave, utilizing the Jensen’s inequality, we have

Eq(z)

[
ln

(
p(x, z;θ)

q(z)

)]
≤ lnEq(z)

(
p(x, z;θ)

q(z)

)
= ln

K∑
k

q(z = k) · p(x, z = k;θ)

q(z = k)
= ln p(x;θ).

Then, it is easy to prove the above theorem.
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Decomposition of Log Likelihood

Theorem

ln p(D;θ) ≥ L(q;θ), ∀q,θ.

Proof 2: According to the non-negative property of KL divergence, we have

KL
(
q(z)||p(z|D;θ)

)
≥ 0,

where the equality holds only when q(z) = p(z|D;θ). Utilizing the decomposi-
tion of the log likelihood (i.e., Eq. (1)), we can prove the above theorem.
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Maximizing the Lower Bound of Log Likelihood

Since learning θ by maximizing ln p(D;θ) is difficult, we resort to maximize
its lower bound L(q;θ) with some auxiliary distribution q(z), i.e.,

max
q(z),θ

L(q;θ) ≡ max
q(z),θ

∑N

n=1
Eqn(z(n))

[
ln

(
p(x(n), z(n);θ)

qn(z(n))

)]
,

with the constraint
∑K

z(n)=1 qn(z
(n)) = 1,∀n.

We adopt the coordinate descent algorithm to solve the above optimization
problem, with the following alternative steps:

Given θ, update q(z);
Given q(z), update θ.

The whole algorithm for fitting the latent variable model is called Expec-
tation Maximization (EM) algorithm.
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Expectation Maximization: E step

Given θ, update q(z) by solving the following sub-problem:

max
q(z)

L(q;θ) ≡ max
q(z)

∑N

n=1
Eqn(z(n))

[
ln

(
p(x(n), z(n);θ)

qn(z(n))

)]
≡max

q(z)

∑N

n=1
Eqn(z(n))

[
ln

(
p(z(n)|x(n);θ) · p(x(n);θ)

qn(z(n))

)]
≡max

q(z)

∑N

n=1
Eqn(z(n))

[
ln

(
p(z(n)|x(n);θ)

qn(z(n))

)
+ ln p(x(n);θ)

]
≡max

q(z)

∑N

n=1
Eqn(z(n))

[
ln

(
p(z(n)|x(n);θ)

qn(z(n))

)]
+ constant

≡min
q(z)

∑N

n=1
Eqn(z(n))

[
ln

(
qn(z

(n))

p(z(n)|x(n);θ)

)]
≡min

q(z)

∑N

n=1
KL
(
qn(z

(n))||p(z(n)|x(n);θ)
)
,

with the constraint
∑K

k=1 qn(z
(n) = k) = 1,∀n.
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Expectation Maximization: E step

Given θ, update q(z) by solving the following sub-problem:

min
q(z)

∑N

n=1
KL
(
qn(z

(n))||p(z(n)|x(n);θ)
)
,

with the constraint
∑K

k=1 qn(z
(n) = k) = 1,∀n.

According to the property of KL divergence, it is easy to find the optimal
solution, as follows:

q∗n(z
(n)) = p(z(n)|x(n);θ).

And this solution also satisfies the equality constraint.

It is interesting to see that

The optimal auxiliary distribution q∗n(z
(n)) is exactly the posterior distribu-

tion p(z(n)|x(n);θ)
Since KL

(
q∗(z)||p(z|D;θ)

)
= 0, then

ln p(D;θ) = L(q∗;θ).

It means that the gap between ln p(D;θ) and its lower bound L(q∗;θ) be-
comes 0, given the current θ.
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Expectation Maximization: M step

Given q(z), update θ by solving the following sub-problem:

max
θ

L(q;θ) ≡ max
θ

∑N

n=1
Eqn(z(n))

[
ln

(
p(x(n), z(n);θ)

qn(z(n))

)]
≡max

θ

∑N

n=1
Eqn(z(n))

[
log p

(
x(n), z(n);θ

)]
− Eqn(z(n))

[
log qn

(
z(n)

)]
︸ ︷︷ ︸

constant w.r.t. θ

Substitute in qn
(
z(n)

)
= p

(
z(n) | x(n);θold

)
:

θnew = argmax
θ

N∑
n=1

Ep(z(n)|x(n);θold)

[
log p

(
z(n),x(n);θ

)]
This is the expected complete data log-likelihood, which is easy to optimize.
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Rcap from last lecture - GMM E-Step: expected log
likelihood

Once we computed γ
(n)
k = p

(
z(n) = k | x(n)

)
, we can compute the expected log

likelihood, as follows:∑
n

EP (z(n)|x(n))

[
ln
(
P (x(n), z(n) | Θ)

)]
=
∑
n

∑
k

γ
(n)
k

(
ln
(
P (z(n) = k | Θ)

)
+ ln

(
P (x(n) | z(n) = k,Θ)

))
=
∑
n

∑
k

γ
(n)
k

(
ln (πk) + ln

(
N (x(n)|µk,Σk)

))
=
∑
n

∑
k

γ
(n)
k ln (πk) +

∑
n

∑
k

γ
(n)
k ln

(
N (x(n)|µk,Σk)

)
,

where Θ = {µ,Σ,π}. Note that the above expectation is fully decomposed to
each data n and each cluster k, which will facilitate the parameter learning in
the following maximization step.
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Rcap from last lecture - GMM M-Step

Maximization step:

Given the posterior probability γ
(n)
k = p

(
z(n) = k | x(n)

)
, we want to up-

date the model parameters Θ = {µ,Σ,π} by maximizing the expected log
likelihood, i.e.,

max
Θ

N∑
n

K∑
k

γ
(n)
k ln (πk)+

N∑
n

K∑
k

γ
(n)
k ln

(
N (x(n)|µk,Σk)

)
, s.t.

K∑
k

πk = 1.

Following the derivations introduced in previous slides (see page 12-17), it
is easy to obtain the following solutions:

µk =
1

Nk

N∑
n=1

γ
(n)
k x(n)

Σk =
1

Nk

N∑
n=1

γ
(n)
k

(
x(n) − µk

)(
x(n) − µk

)⊤
πk =

Nk

N
, with Nk =

N∑
n=1

γ
(n)
k
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Expectation Maximization: Summary

The EM algorithm alternates between making the bound tight at the cur-
rent parameter values and then optimizing the lower bound

If the current parameter value is θold:

E-step: Given θold, we update the auxiliary distribution q(z) to make the
bound tight:

q(z) = argmax
q(z)

L(q,θold). (2)

It leads to qn
(
z(n)

)
= p

(
z(n) | x(n);θold

)
, ∀n, and makes

log p
(
D;θold

)
= L

(
q;θold

)
M-step: Given q(z) updated above, we update θ by optimizing the lower
bound:

θnew = argmax
θ

L(q,θ)

= argmax
θ

N∑
n=1

Eqn(z(n))

[
log

p
(
z(n),x(n);θ

)
qn (z(n))

]
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EM Convergence

We can deduce that an iteration of EM will improve the log-likelihood by
using the fact that the bound is tight at θold after the E-step

Let q denote the qn after the E-step, i.e., qn
(
z(n)

)
= p

(
z(n) | x(n);θold

)
log p (D;θnew) ≥ L (q,θnew) since log p(D;θ) ≥ L(q,θ) always holds

≥ L
(
q,θold

)
since θnew = argmax

θ
L(q,θ)

= log p
(
D;θold

)
since log p

(
D;θold

)
= L

(
q;θold

)
It tells that the log likelihood objective keeps increasing after each iteration
of EM, until convergence.
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EM Visualization

The EM algorithm involves alternately computing a lower bound on the
log likelihood for the current parameter values and then maximizing this
bound to obtain the new parameter values.
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Revisiting Gaussian Mixture Models

Let’s revisit the Gaussian mixture models from last lecture and derive the
updates using our general EM algorithm

Recall our model was:

p(x;θ) =
∑
z

p(x, z;θ) =
∑
z

p(x|z;θ)p(z|θ) (3)

p(z = k;θ) = πk,

K∑
k=1

πk = 1. (4)

p(x | z = k;θ) = N (x;µk,Σk) (5)

In this scenario, we have θ = {πk, µk,Σk}Kk=1.
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E-Step for Gaussian Mixture Models

Let the current parameters be θold =
{
πold
k , µold

k ,Σold
k

}K
k=1

E-step: For all n, set qn
(
z(n)

)
= p

(
z(n) | x(n);θold

)
, i.e.,

γ
(n)
k :=qn

(
z(n) = k

)
= p

(
z(n) = k | x(n); θold

)
=

πold
k N

(
x(n) | µold

k ,Σold
k

)∑K
j=1 π

old
j N

(
x(n) | µold

j ,Σold
j

)
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M-Step for Gaussian Mixture Models

M-step:

θnew = argmax
θ

N∑
n=1

Eqn(z(n))

[
log p

(
z(n),x(n);θ

)]
, s.t.

K∑
k=1

πk = 1.

Substitute in:

log p
(
z(n),x(n);θ

)
=

∑K
k=1 1{z(n)=k}

(
log πk + logN

(
x(n);µk,Σk

))
qn

(
z(n)

)
= p

(
z(n) | x(n);θold

)
:

We have:

θnew = argmax
θ

N∑
n=1

Eqn(z(n))

[
K∑

k=1

1{z(n)=k}

(
log πk + logN

(
x(n);µk,Σk

))]

= argmax
θ

N∑
n=1

K∑
k=1

γ
(n)
k

(
log πk + logN

(
x(n);µk,Σk

))
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M-Step for Gaussian Mixture Models

M-step:

θnew = argmax
θ

N∑
n=1

K∑
k=1

γ
(n)
k

(
log πk + logN

(
x(n);µk,Σk

))

Taking derivatives and setting to zero, and utilizing the constraint
∑K

k=1 πk =
1, we get the exactly same updates from last lecture:

µk =
1

Nk

N∑
n=1

γ
(n)
k x(n)

Σk =
1

Nk

N∑
n=1

γ
(n)
k

(
x(n) − µk

)(
x(n) − µk

)T
πk =

Nk

N
with Nk =

N∑
n=1

γ
(n)
k .
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EM Recap

A general algorithm for optimizing many latent variable models, such as
GMMs, mixture of Bernoulli distribution

Iteratively computes a lower bound then optimizes it.

Converges but maybe to a local minima.

Can use multiple restarts.

Can initialize from k-means for mixture models.

Limitation - need to be able to compute p(z|x;θ), not possible for more
complicated models.
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