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Mixture Models

We model the joint distribution over (x, z) as follows

p(x, z) = p(x|z)p(z),

where x denotes a feature variable, and z denotes the class label variable.

However, we do not have the class labels z in unsupervised clustering.

In this case, we can model the marginal distribution over x as follows

p(x) =
∑
z

p(x, z) =
∑
z

p(x|z)p(z)

This is called as mixture models.
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Gaussian Mixture Model (GMM)

The most common mixture model is called as Gaussian mixture model (GMM).

A GMM represents a distribution as

p(x) =

K∑
k=1

πkN (x | µk,Σk)

with πk the mixing coefficients, where:
∑K

k=1 πk = 1 and πk ≥ 0,∀k. And,

N (x | µk,Σk) =
1√

(2π)d|Σk|
exp

(
−1

2
(x− µk)

⊤Σ−1
k (x− µk)

)
,

with |Σk| = det(Σk) denotes the determinant of Σk, d indicates the di-
mension of x.

GMM is a density estimator. If given enough Gaussian components, GMM
is universal approximator of densities.

In general, mixture models are very powerful, but difficult to optimize
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Visualizing a Mixture of Gaussians – 1D Gaussians

If you fit a Gaussian to data:

Now, we are trying to fit a GMM (with K = 2 in this example):

[Slide credit: K. Kutulakos]
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Visualizing a Mixture of Gaussians – 2D Gaussians
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Fitting GMMs: Maximum Likelihood

The log likelihood is

logL(Θ) = ln p(X | π,µ,Σ) =

N∑
n=1

ln

(
K∑

k=1

πkN
(
x(n) | µk,Σk

))

where X = {x(1), . . . ,x(n)}, Θ = {π,µ,Σ}, π = {π1, . . . , πK}, µ =
{µ1, . . . ,µK}, Σ = {Σ1, . . . ,ΣK}, and
We aim to learn the parameters Θ by maximizing the above log likelihood.

Due to the log-sum-exp operation, we cannot obtain a closed-form solution
by setting the derivative to zero.

Of course you can choose gradient based method. However, in the following
we will introduce a more elegant optimization method.
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Latent Variable

We introduce a hidden (latent) variable z, indicating which Gaussian com-
ponent generates the observation x, with some probability

Let z ∼ Categorical (π), where π ≥ 0,
∑

k πk = 1

Then:

p(x) =

K∑
k=1

p(x, z = k) =

K∑
k=1

p(z = k)︸ ︷︷ ︸
πk

p(x | z = k)︸ ︷︷ ︸
N (x|µk,Σk)

This breaks a complicated distribution into simple components - the price
is the hidden variable.
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Latent Variable Models

Latent variable model (LVM):

Definition: A latent variable model is a statistical model that relates a set
of observable variables to a set of latent variables.

Some model variables may be unobserved, either at training or at testing
time, or both. Variables which are always unobserved are called latent
variables, or sometimes hidden variables.

We may want to intentionally introduce latent variables to model complex
dependencies between variables – this can actually simplify the model

According to the type of latent variables, there are two types of LVMs,

LVM with continuous latent variables, e.g., factor analysis
LVM with discrete latent variables, e.g., mixture models

Reference:
https://en.wikipedia.org/wiki/Latent_variable_model
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Back to GMM

A Gaussian mixture distribution:

p(x) =

K∑
k=1

πkN (x | µk,Σk)

We had: z ∼ Categorical (π), i.e., p(z = k | π) = πk, where π ≥
0,

∑
k πk = 1

Joint distribution: p(x, z) = p(z)p(x | z)
Log-likelihood:

ℓ(π,µ,Σ) = ln p(X | π,µ,Σ) =

N∑
n=1

ln p
(
x(n) | π,µ,Σ

)
=

N∑
n=1

ln

K∑
k=1

p
(
x(n), z(n) = k | π,µ,Σ

)
=

N∑
n=1

ln
K∑

k=1

p
(
x(n) | z(n) = k;µ,Σ

)
p(z(n) = k | π)

Note: we have a hidden variable z(n) for every observation x(n)

How can we optimize this problem, since there is sum inside the log?
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Maximum Likelihood

If we knew z(n) for every x(n), the maximum log likelihood problem is
easy:

max ℓ(π,µ,Σ) =

N∑
n=1

ln

K∑
k=1

1[z(n)=k] · p
(
x(n), z(n) = k | π,µ,Σ

)
=

N∑
n=1

[
ln
(
1[z(n)=k] · p

(
x(n) | z(n) = k;µ,Σ

))
+ ln

(
1[z(n)=k] · p

(
z(n) = k | π

))]
,

with the constraint 1−
∑K

k=1 πk = 0.

For the above constrained optimization problem, we also resort to KKT
conditions based on Lagrangian function, as follows:

L(π,µ,Σ, λ) = −ℓ(π,µ,Σ) + λ(1−
K∑

k=1

πk).

Note that the original primal problem is maximizing ℓ(π,µ,Σ), thus it
should be −ℓ(π,µ,Σ) in the Lagrangian function.
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Maximum Likelihood

Lagrangian function:

L(π,µ,Σ, λ) = −ℓ(π,µ,Σ) + λ(1−
K∑

k=1

πk).

Since there is only one equality constraint, there are only stationary and
primal feasibility constraints in KKT conditions. Specifically, ∀k, we have

∂L(π,µ,Σ, λ)

∂µk
=

−∂
∑N

n=1 1[z(n)=k] ln p(x
(n);µk,Σk)

∂µk
= 0, (1)

∂L(π,µ,Σ, λ)

∂Σk
=

−∂
∑N

n=1 1[z(n)=k] ln p(x
(n);µk,Σk)

∂Σk
= 0, (2)

∂L(π,µ,Σ, λ)

∂πk
=

∂
∑N

n=1 1[z(n)=k] lnπk

∂πk
− λ = 0, (3)

1−
K∑

k=1

πk = 0. (4)
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Maximum Likelihood

The solution to µk:

∂L(π,µ,Σ, λ)

∂µk
=

−∂
[∑N

n=1 1[z(n)=k] ln p(x
(n);µk,Σk)

]
∂µk

= 0, (5)

⇒
∂
[∑N

n=1 1[z(n)=k](−
1
2 )(x

(n) − µk)
⊤Σ−1

k (x(n) − µk)
]

∂µk
= 0, (6)

⇒
N∑

n=1

1[z(n)=k]Σ
−1
k (x(n) − µk) = 0, (7)

⇒
N∑

n=1

1[z(n)=k](x
(n) − µk) = 0, (8)

⇒µk =

∑N
n=1 1[z(n)=k]x

(n)∑N
n=1 1[z(n)=k]

. (9)
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Maximum Likelihood

The solution to Σk:

∂L(π,µ,Σ, λ)

∂Σk
=

−∂
[∑N

n=1 1[z(n)=k] ln p(x
(n);µk,Σk)

]
∂Σk

= 0, (10)

⇒
∂
[
1
2

∑N
n=1 1[z(n)=k]

(
ln |Σk|+ (x(n) − µk)

⊤Σ−1
k (x(n) − µk)

)]
∂Σk

= 0. (11)

We define Λk = Σ−1
k , which is called precision matrix. Then, the above

equation is equivalent to:

∂
[
1
2

∑N
n=1 1[z(n)=k]

(
ln |Λ−1

k |+ (x(n) − µk)
⊤Λk(x

(n) − µk)
)]

∂Λk
= 0, (12)

≡
∂
[
1
2

∑N
n=1 1[z(n)=k]

(
− ln |Λk|+ (x(n) − µk)

⊤Λk(x
(n) − µk)

)]
∂Λk

= 0, (13)

where we utilize that |Λ−1
k | = 1

|Λk| .
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Maximum Likelihood

The solution to Σk:

Its solution is derived as follows:

∂
[
1
2

∑N
n=1 1[z(n)=k]

(
− ln |Λk|+ (x(n) − µk)

⊤Λk(x
(n) − µk)

)]
∂Λk

= 0, (14)

⇒1

2

N∑
n=1

1[z(n)=k]
(
−Λ−1

k + (x(n) − µk)(x
(n) − µk)

⊤) = 0, (15)

⇒Λ−1
k = Σk =

∑N
n=1 1[z(n)=k](x

(n) − µk)(x
(n) − µk)

⊤∑N
n=1 1[z(n)=k]

, (16)

where we utilize that d ln |Λk|
dΛk

= Λ−1
k .

Reference of matrix derivatives: https://en.wikipedia.org/wiki/Matrix_

calculus
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Maximum Likelihood

The solution to π:

∂L(π,µ,Σ, λ)

∂πk
=

∑N
n=1 1[z(n)=k] lnπk

∂πk
− λ = 0, (17)

⇒
N∑

n=1

1[z(n)=k]

πk
= λ ⇒

N∑
n=1

1[z(n)=k] = πkλ. (18)

Combining with 1−
∑K

k=1 πk = 0, we can obtain λ = N , which is replaced
back to obtain

πk =
1

N

N∑
n=1

1[z(n)=k].
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Maximum Likelihood

Solution summary:

If we knew z(n) for every x(n), the maximum log likelihood problem is easy:

max ℓ(π,µ,Σ) =

N∑
n=1

ln p
(
x(n), z(n) | π,µ,Σ

)
,

with the constraint 1−
∑K

k=1 πk = 0.

Its solution is

µk =

∑N
n=1 1[z(n)=k]x

(n)∑N
n=1 1[z(n)=k]

Σk =

∑N
n=1 1[z(n)=k]

(
x(n) − µk

) (
x(n) − µk

)T∑N
n=1 1[z(n)=k]

πk =
1

N

N∑
n=1

1[z(n)=k]
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Maximum Likelihood

However, how to learn the parameters when we don’t know z(n) for every x(n)?
We have to resort to the expectation maximization algorithm.
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Intuitively, How Can We Fit a Mixture of Gaussians?

Optimization uses the Expectation Maximization algorithm, which alter-
nates between two steps:

E-step: Compute the posterior probability over z given the current model,
i.e., p(z|x;Θ), which tells how much do we think each Gaussian generates
each data point.

M-step: Assuming that the data was really generated this way, update the
parameters of each Gaussian component to maximize the probability that
it would generate the data it is currently responsible for.
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Expectation Maximization for GMM Overview

Elegant and powerful method for finding maximum likelihood solutions for mod-
els with latent variables

E-step:

In order to adjust the parameters, we must first solve the inference problem:
which Gaussian component generated each datapoint?
We cannot ensure, so it’s a distribution over all possibilities.

γ
(n)
k = p

(
z(n) = k | x(n);π,µ,Σ

)
.

M-step:

Each Gaussian gets a certain amount of posterior probability for each dat-
apoint.
We fit each Gaussian to the weighted datapoints.
We can derive closed form updates for all parameters
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GMM E-Step: Responsibilities

Lets see how EM works on GMM:
Conditional probability (using Bayes rule) of z given x

γk = p(z = k | x) = p(z = k)p(x | z = k)

p(x)

=
p(z = k)p(x | z = k)∑K
j=1 p(z = j)p(x | z = j)

=
πkN (x | µk,Σk)∑K
j=1 πjN (x | µj ,Σj)

.

γk can be viewed as the responsibility of cluster k towards x

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning: Lecture 15 Gaussian Mixture ModelsNovember 14/16, 2023 23 / 33



GMM E-Step: expected log likelihood

Once we computed γ
(n)
k = p

(
z(n) = k | x(n)

)
, we can compute the expected log

likelihood, as follows:∑
n

EP (z(n)|x(n))

[
ln
(
P (x(n), z(n) | Θ)

)]
=
∑
n

∑
k

γ
(n)
k

(
ln
(
P (z(n) = k | Θ)

)
+ ln

(
P (x(n) | z(n) = k,Θ)

))
=
∑
n

∑
k

γ
(n)
k

(
ln (πk) + ln

(
N (x(n)|µk,Σk)

))
=
∑
n

∑
k

γ
(n)
k ln (πk) +

∑
n

∑
k

γ
(n)
k ln

(
N (x(n)|µk,Σk)

)
,

where Θ = {µ,Σ,π}. Note that the above expectation is fully decomposed to
each data n and each cluster k, which will facilitate the parameter learning in
the following maximization step.
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GMM M-Step

Maximization step:

Given the posterior probability γ
(n)
k = p

(
z(n) = k | x(n)

)
, we want to up-

date the model parameters Θ = {µ,Σ,π} by maximizing the expected log
likelihood, i.e.,

max
Θ

N∑
n

K∑
k

γ
(n)
k ln (πk)+

N∑
n

K∑
k

γ
(n)
k ln

(
N (x(n)|µk,Σk)

)
, s.t.

K∑
k

πk = 1.

Following the derivations introduced in previous slides (see page 12-17), it
is easy to obtain the following solutions:

µk =
1

Nk

N∑
n=1

γ
(n)
k x(n)

Σk =
1

Nk

N∑
n=1

γ
(n)
k

(
x(n) − µk

)(
x(n) − µk

)⊤
πk =

Nk

N
, with Nk =

N∑
n=1

γ
(n)
k

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning: Lecture 15 Gaussian Mixture ModelsNovember 14/16, 2023 25 / 33



EM for fitting GMM

Summary of EM: Initialize the means µk, covariances Σk and mixing coeffi-
cients πk

Iterate until convergence:
E-step: Evaluate the responsibilities given current parameters

γ
(n)
k = p

(
z(n) = k | x(n); Θ

)
=

πkN
(
x(n) | µk,Σk

)∑K
j=1 πjN

(
x(n) | µj ,Σj

) .
M-step: Re-estimate the parameters given current responsibilities

µk =
1

Nk

N∑
n=1

γ
(n)
k x(n),

Σk =
1

Nk

N∑
n=1

γ
(n)
k

(
x(n) − µk

)(
x(n) − µk

)⊤
,

πk =
Nk

N
, with Nk =

N∑
n=1

γ
(n)
k .

Evaluate log likelihood and check for convergence

ln p(X | π,µ,Σ) =
∑N

n=1
ln
(∑K

k=1
πkN (x(n) | µk,Σk)

)
.
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EM for fitting GMM

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning: Lecture 15 Gaussian Mixture ModelsNovember 14/16, 2023 27 / 33



1 Gaussian Mixture Model for Density Estimation

2 The Latent Variable Perspective for Gaussian Mixture Model

3 Expectation Maximization for Fitting Gaussian Mixture Model

4 Relation to k-Means

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning: Lecture 15 Gaussian Mixture ModelsNovember 14/16, 2023 28 / 33



Relation to k-Means

The K-Means Algorithm:

Assignment step: Assign each data point to the closest cluster, i.e., hard
assignment

Refitting step: Move each cluster center to the center of gravity of the
data assigned to it

The EM Algorithm:

E-step: Given the current model, compute the posterior probability over
z for each data point, like soft assignment

M-step: Given the posterior probability, update the model parameters by
maximizing the expected log-likelihood
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Relation to k-Means

If fixing the covariance matrices Σ as the identity matrix I for all Gaussian
components, EM for GMMs is reduced to a soft version of K-means

Instead of hard assignments in the E-step, EM does soft assignments
based on the softmax of the squared Euclidean distance from each point to
each cluster.

Each center moved by weighted means of the data, with weights given
by soft assignments

In K-means, weights are 0 or 1

GMM provides a probabilistic view of clustering - Each cluster corresponds
to a different Gaussian component.

JIA, Kui School of Data Science, CUHK-SZDDA3020 Machine Learning: Lecture 15 Gaussian Mixture ModelsNovember 14/16, 2023 30 / 33



Where does EM come from?

The final issue:

Let’s recall the original objective function (i.e., log-likelihood) of fitting
GMM, as follows

ℓ(π,µ,Σ) = ln p(X | π,µ,Σ) =

N∑
n=1

ln

K∑
z(n)=1

p
(
x(n), z(n) | π,µ,Σ

)
However, in the EM algorithm introduced above, this objective function
never occurs. Instead, we maximize the following expected log-likelihood
in the M-step,

N∑
n=1

Ep(z(n)|x(n))

[
ln
(
p(x(n), z(n) | Θ)

)]
.

So, why EM is a good algorithm for fitting GMM? What is relationship
between above two objective functions?

In the next lecture, we will provide a principled justification of the EM
algorithm to answer these questions.
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Examples of Clustering Results

Link: https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_
comparison.html#sphx-glr-auto-examples-cluster-plot-cluster-comparison-py
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Reference

Further readings:

Chapter 9 in the book “Pattern Recognition and Machine Learning”. Link

Demo with code: https://scikit-learn.org/stable/modules/generated/
sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture
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