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Abstract Feature-based object matching is a fundamental
problem for many applications in computer vision, such as
object recognition, 3D reconstruction, tracking, and motion
segmentation. In this work, we consider simultaneously
matching object instances in a set of images,where both inlier
and outlier features are extracted. The task is to identify the
inlier features and establish their consistent correspondences
across the image set. This is a challenging combinatorial
problem, and the problem complexity grows exponentially
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with the image number. To this end, we propose a novel
framework, termed Robust Object Matching using Low-rank
constraint (ROML), to address this problem. ROML opti-
mizes simultaneously a partial permutationmatrix (PPM) for
each image, and feature correspondences are established by
the obtained PPMs. Two of our key contributions are sum-
marized as follows. (1) We formulate the problem as rank
and sparsity minimization for PPM optimization, and treat
simultaneous optimization of multiple PPMs as a regularized
consensus problem in the context of distributed optimization.
(2) We use the alternating direction method of multipliers
method to solve the thus formulated ROML problem, in
which a subproblem associated with a single PPM optimiza-
tion appears to be a difficult integer quadratic program (IQP).
We prove that under wildly applicable conditions, this IQP is
equivalent to a linear sum assignment problem, which can be
efficiently solved to an exact solution. Extensive experiments
on rigid/non-rigid object matching, matching instances of a
common object category, and common object localization
show the efficacy of our proposed method.

Keywords Object matching · Feature correspondence ·
Low-rank · Sparsity

1 Introduction

Object matching is a fundamental problem in computer
vision. Given a pair or a set of images that contain com-
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mon object instances, or an object captured under varying
poses, it involves establishing correspondences between the
parts or features of the objects contained in the images. Accu-
rate, robust, and consistent matching across images is a key
ingredient in a wide range of applications such as object
recognition, shape matching, 3D reconstruction, tracking,
and motion segmentation.

For a pair of feature sets extracted from two images, find-
ing inliers from them and establishing correspondences are in
general a combinatorial search problem. Objects may appear
in images with cluttered background, and some parts of the
objects may also be occluded. The search space can further
explode when a globally consistent matching across a set
of images is desired. For object instances with large intra-
category variations or those captured under varying poses
(e.g., non-rigid objects with articulated pose changes), the
matching tasks become even more difficult. All these factors
make object matching a very challenging task.

In literature, a variety of strategies have been proposed for
object matching. In particular, early shape matching works
use point sets to represent object patterns (Scott andLonguet-
Higgins 1991; Shapiro 1992). To match between a pair of
point sets, they build point descriptions by modeling spatial
relations of points within each point set as higher level geo-
metric structures, e.g., lines, curves, and surfaces, or more
advanced features, e.g., shape context (Belongie et al. 2002).
In Besl and McKay (1992), Chui and Rangarajan (2003),
Belongie et al. (2002), alternating estimation of point cor-
respondence and geometric transformation is also used for
non-rigid shape matching. In general, point set based shape
matching is less robust to measurement noise and outliers,
with classical techniques such as RANSAC (Fischler and
Bolles 1981) available to improve its robustness. The devel-
opment of local invariant features (Lowe 1999; Mikolajczyk
and Schmid 2004) for discriminative description of visual
appearance has brought significant progress in object match-
ing and recognition (Serre et al. 2005). For example inRussell
et al. (2006), Deselaers et al. (2012), instances of a com-
mon object category from an image collection can be located
and matched by exploiting the discriminative power of local
feature descriptors. The popular Bag-of-Words model for
object recognition is also built onmatching (clustering) simi-
lar local region descriptors. However, local descriptors alone
can be ambiguous for matching when there exist repetitive
textures or less discriminative local appearance in images.
In between of these two extremes, recent graph matching
methods (Leordeanu and Hebert 2005; Torresani et al. 2008;
Zhou and De la Torre 2012) consider both feature similarity
and geometric compatibility between two sets of features,
where the nodes of graphs correspond to local features and
edges encode spatial relations between them. Mathemati-
cally, graphmatching is formulated as a quadratic assignment
problem (QAP), which is known to be NP-hard. Although

intensive efforts of these methods have been focusing on
devising more accurate and efficient algorithms to solve
this problem, in general, they can only obtain approximate
solutions for QAP, and thus suboptimal correspondences for
robust object matching.

Most of these methods focus on establishing correspon-
dences between a pair of images. However, in practice, it is
very common that when such a pair of images are available,
a set of images are also available that we know a com-
mon object is present in them, such as a video sequence
with a moving object, or a set of images collected from the
Internet that contain instances of a generic object category.
In these situations, it is desired that a globally consistent
matching can be established. This is a very challenging com-
binatorial problem. As the number of images increases, the
problem complexity explodes exponentially. A straightfor-
ward approach is to locally build correspondences between
pairs of images. Obviously, pair-wise matching can only get
suboptimal solutions, since matching found between pairs of
images may not be globally consistent across the whole set.
Compared to globalmatching, pair-wisematching is also less
robust to outliers and occlusion of inlier features, as it cannot
leverage additional constraints from other images that also
contain the same object pattern of interest. In this work, we
are thus interested in the following object matching problem.

Problem 1 Given a set of images with both inlier and
outlier features extracted from each image, simultaneously
identify a given number of inlier features from each image
and establish their consistent correspondences across the
image set.

In Problem 1, we consider the common scenario in object
matching that there is exactly one object instance in each
image. The inlier features describe appearance of the salient
local regions of the object, and the rest of the features are
outliers. One may think of these features as local region
descriptors such as SIFT (Lowe 1999) or HOG (Dalal and
Triggs 2005), although other types of features can also be
used, which will be deliberated in later sections. Under
this setting, the object instance contained in each image
is naturally represented as a set of inlier features. Without
consideration of intra-category variations, the corresponding
inlier features extracted from different images, which char-
acterize the same salient local regions of different instances
of the object category, would be linearly correlated. When
concatenating ordered inlier features in each image as a sim-
ple feature of the object instance (thinking of concatenating
several SIFT feature vectors as a single vector), and then
arraying these features of different images as the columns of
a large matrix, this matrix will have low-rank, and ideally
rank one. In situations where intra-category variations exist,
e.g., variations in inlier features of different images caused by
illumination or pose changes, the matrix low-rank property
can still hold by decomposing out some errors.
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Motivated by these observations, we propose in this paper
a novel and principled framework, termed Robust Object
Matching using Low-rank constraint (ROML), for identify-
ing and matching inlier features of object instances across
a set of images. ROML leverages the aforementioned low-
rank property, via minimizing rank of a matrix and sparsity
of a matrix (for decomposing out sparse errors), to simul-
taneously optimize a partial permutation matrix (PPM) for
each image, and feature correspondences are established by
the obtained PPMs (cf. (1) for the definition of PPM). The
so formulated ROML problem concerns with simultaneous
optimization ofmultiple PPMs,which belongs to amore gen-
eral class of multi-index assignment problem (MiAP) and
is proven to be NP-hard (Burkard et al. 2009). Exact solu-
tion methods are prohibitively slow for practical use. In this
work, we treat simultaneous optimization of multiple PPMs
involved in ROML as a regularized consensus problem in the
context of distributed optimization (Bertsekas and Tsitsiklis
1989). We use the Alternating DirectionMethod of Multipli-
ers (ADMM) (Boyd et al. 2011) to solve the ROML problem,
in which a subproblem associated with a single PPM opti-
mization appears to be a difficult integer quadratic program
(IQP).We prove that under widely applicable conditions, this
IQP is equivalent to a linear sumassignment problem (LSAP)
(Burkard et al. 2009), which can be efficiently solved to an
exact solution using the Hungarian algorithm (Kuhn 1955).
Extensive experiments on rigid/non-rigid object matching,
matching instances of a common object category, and com-
mon object localization show the efficacy of our proposed
method. AMATLAB implementation of our method and the
data used in the experiments can be found from our project
website: https://sites.google.com/site/kuijia/research/roml.

A preliminary work of this paper has appeared in Zeng
et al. (2012). In the present paper, we have made significant
improvement over (Zeng et al. 2012) in the following aspects.
In addition, we have also completely rewritten the paper to
present our ideas more clearly.

– Although (Zeng et al. 2012) proposes to optimize a set
of PPMs via rank and sparsity minimization for robust
featurematching, however, its solution of each PPMopti-
mization is obtained by sequentially solving two costly
subproblems: a quadratic program over the continuous-
domain relaxation of PPM, followed by a binary integer
programming that projects the relaxed PPM into its feasi-
ble set. In fact, the second subproblem is irrelevant to the
original objective function, and consequently, the thus
obtained PPM is only suboptimal. In contrast, we pro-
pose in the present paper a new method to solve the PPM
optimization and prove that under wildly applicable con-
ditions, the PPM optimization step is equivalent to an
LSAP,which can be efficiently solved to an exact solution
using the Hungarian algorithm. Extensive experiments in

Sect. 5 show the great advantage of the proposed ROML
over the method in Zeng et al. (2012) in terms of both
matching accuracy and efficiency.

– We present mathematical analysis in this paper to show
that the proposed ROML formulation belongs to the NP-
hardMiAP.We also discuss the suitability of ADMM for
approximately solving ROML from the perspective of
distributed optimization. These analysis and discussion
put ROML in a broader context, which are overlooked in
Zeng et al. (2012).

2 Related Works

There is an intensive literature on object/shape matching
between a pair of images (Conte et al. 2004). Repre-
sentative works include shape context (Belongie et al.
2002), graph (Leordeanu and Hebert 2005; Torresani et al.
2008) and hyper-graph (Lee et al. 2011; Zass and Shashua
2008; Duchenne et al. 2011) matching. In this section, we
briefly review several existing methods that use multiple
images/point sets for object matching, and also themore gen-
eral MiAP.

Maciel and Costeira (2003) first proposed to use PPM
to model both feature matching and outlier rejection in a
set of images. They formulated optimization of PPMs as an
integer constrainedminimizationproblem.To solve this com-
binatorial problem, they relaxed both the objective function
and integer constraints, resulting in an equivalent concave
minimization problem. However, the complexity of concave
minimization is still non-polynomial. Moreover, matching
criteria used in the cost function of Maciel and Costeira
(2003) were locally based on pair-wise similarity of features
in different images. Instead, our method is based on low-rank
and sparse minimization (via convex surrogate functions),
whose problem size is polynomial w.r.t. the numbers of fea-
tures and images, and whose cost function is also globally
defined over features in all the images.

Rank constraints have been used in Oliveira et al. (2005),
Oliveira et al. (2006) for point matching across video frames.
They constructed a measurement matrix containing image
coordinates of points extracted from a moving rigid object.
Motivated by factorization model in shape-from-motion
(Tomasi and Kanade 1992), they assumed this measurement
matrix was low-rank, and used rank constraints to optimize
PPMs for establishing point correspondences across frames.
The method in Oliveira et al. (2005) is limited in several
aspects: (1) an initial template of point set without outliers
is assumed given; (2) every inlier point is required to be
visible in all frames; (3) matching across frames is a boot-
strapping process—points in a subsequent frame are to be
aligned to those of previously matched frames, thus match-
ing errors will inevitably propagate and accumulate; (4) an
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initial rough estimate of point correspondences for a new
frame is assumed given in their algorithm, which may be
only valid for slow motion objects. The aspects (1) and (3)
have to some extent been alleviated in Oliveira et al. (2006),
but Oliveira et al. (2006) cannot cope with the other lim-
iting aspects. As a globally consistent and robust matching
framework, ourmethod has no such limitations.More impor-
tantly, we note that the mechanism of rank constraints used
in Oliveira et al. (2005, 2006) is different from that of our
method. Methods (Oliveira et al. 2005, 2006) can only apply
to matching of rigid objects using image coordinates as fea-
tures, while our method considers low-rank assumption on a
type of generally defined features, which take image coordi-
nates and region descriptors as instances. Consequently, our
method is able to apply in more general scenarios, such as
matching of objects with non-rigid deformation.

Recently, a low-dimensional embedding method was pro-
posed in Torki and Elgammal (2010) for feature matching.
Given feature points extracted from each of a set of images,
it can learn an embedded feature space, which encodes infor-
mation of both region descriptors and the geometric structure
of points in each image. Torki and Elgammal (2010) used k-
means clustering in the embedded space for featurematching.
As we will show in Sect. 5, k-means based on Euclidean dis-
tances of embedded features is not a good way to establish
correspondences. There is no explicit outlier rejection mech-
anism in Torki and Elgammal (2010) either. Compared to
Torki and Elgammal (2010), our method uses the low-rank
and sparse constraints to optimize PPMs, which integrates
correspondence and outlier rejection in a single step.

Asmentioned in Sect. 1, ourROML formulation formulti-
image object matching belongs to a more general class of
MiAP for data association (Burkard et al. 2009), with other
vision applications such as multi-target tracking (Collins
2012). MiAP is proven to be NP-hard, and only implicit
enumeration methods such as branch-and-bound are known
to give an exact solution, which are however prohibitively
slow for practical use. Classical approximate solution meth-
ods include greedy, Greedy Randomized Adaptive Search
Procedure (GRASP) (Robertson 2001), and relaxation based
methods (Poore and Robertson 1997).

Greedy approaches build a matching that has the lowest
cost at each iteration, which has the obvious weakness that
decisions once made, are fixed and may later be shown to
be suboptimal. GRASP improves over greedy approaches by
progressively constructing a list of best candidate matches
and randomly selecting one from them. The process is
repeated until all matches are exhausted. A final local search
over the neighborhood of obtained matches may be used
to further optimize the solution. In Poore and Robertson
(1997), Poore and Robertson presented a Lagrangian relax-
ation method that progressively relaxes the original and
intermediate recoveryMiAPs to linear assignment problems,

by incorporating constraints of each MiAP into its objective
function via the Lagrangian. However, this method involves
implicitly enumerative procedure, and is difficult to imple-
ment and analyze.

Collins (2012) recently proposed an iterated conditional
modes (ICM) like method for video based multi-target track-
ing. His method is based on factoring the global decision
variable for each target trajectory into a product of local
variables defined for a target matching between each pair of
adjacent frames. It then pair-wisely builds target matchings
between adjacent frames by optimizing the corresponding
local variables, but using a global cost function as match-
ing criteria. However, the cost function in Collins (2012) is
defined by enumerating for every possible target trajectory
a constant-velocity motion energy, and the number of can-
didate trajectories grows exponentially with the number of
frames. Both factors make it less applicable to the feature-
based object matching problem considered in this paper.
Nevertheless, our ROML formulation bears some spiritually
similar idea with Collins (2012), in the sense that we also
factor the global decision variables for multi-image feature
matching into separate components. The difference is that we
factor these global variables as a set of PPMs, each of which
is to be optimized to identify inlier features from an image
and re-arrange them in a proper order. We then treat the joint
optimization of these PPMs as a regularized consensus prob-
lem in the context of distributed optimization (Bertsekas and
Tsitsiklis 1989), and solve it using a ADMM-based method
(Boyd et al. 2011). By this means the original NP-hard com-
binatorial problem boils down as to iteratively solve a set of
independent pair-wise matching problems, which turn out to
be easily solved.

In the preparation of this paper, we notice that a related
method called permutation synchronization (Pachauri et al.
2013)was recently proposed, which also addresses theMiAP
by optimizing a permutation matrix for each feature set.
However, Pachauri et al. (2013) assumes initial matchings
between each pair of the feature sets be available, and can
only apply in the scenarios where there exist no outliers in
each feature set, which make it less useful in the consid-
ered problem of feature-based object matching across a set
of images.

3 Robust Object Matching Using Low-Rank and
Sparse Constraints

Given a set of K images, we present in this section our prob-
lem formulation and algorithm for robust object matching.
We consider the settings as stated in Problem 1. Assume nk
features {fki }nki=1 be extracted from the kth image, where the
feature vector fki ∈ R

d can be either image coordinates of
the feature point, or region descriptors such as SIFT (Lowe
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1999) that characterize the local appearance. It can also be a
combination of them by low-dimensional embedding (Torki
and Elgammal 2010). In spite of these multiple choices, for
now we generally refer to them as features. Discussion of
different feature types and their applicable spectrums will
be presented in Sect. 4. These nk features are categorized
as inliers or outliers. We assume at this moment that there
are n inliers in each of the K images, where n ≤ nk for
k = 1, . . . , K . We will discuss the case of missing inliers
shortly. In such a setting every kth image is represented as a
set of nk features, and the contained object instance is repre-
sented as the n inlier features.

3.1 Problem Formulation

Note that for inlier features in the K images, it is the fea-
ture similarity and geometric compatibility that determine
they form an object pattern and this pattern repeats across
the set of images. While similar outlier features may appear
in multiple images, they just accidently do so in a ran-
dom, unstructured way. Our formulation for object matching
is essentially motivated by these observations. Concretely,

denote F
k = [fk1 , . . . , fkn ] ∈ R

d×n as the matrix formed
by inlier feature vectors in the kth image, so defined are

the matrices {F1
, . . . ,F

K } for all the K images. Assume
column vectors in each of these matrices are arrayed in

the same order, i.e., inlier features in {F1
, . . . ,F

K } are
respectively corresponded, then the matrix formed by D =
[vec(F1

), . . . , vec(F
K
)] ∈ R

dn×K will be approximately
low-rank, ideally rank one, where vec(·) is an operator that
vectorizes a matrix by concatenating its column vectors.

Now consider the general case that there are outliers.
Denote Fk = [fk1 , . . . , fknk ] ∈ R

d×nk as the matrix having all
nk features of the kth image as its columns,where feature vec-
tors are placed in a random order. Thematrices {F1, . . . ,FK }
for all K images are similarly defined.As aforementioned our
interest for object matching is to identify the n inlier feature
vectors from each matrix of {F1, . . . ,FK }, and establish cor-
respondences among them. For any kth image, this can be
realized by the partial permutation matrix (PPM) defined by

Pk = {Pk ∈ R
nk×n

∣
∣pki, j ∈ {0, 1},

∑

i

pki, j = 1

∀ j = 1, . . . , n,
∑

j

pki, j ≤ 1 ∀i = 1, . . . , nk}, (1)

where pki, j denotes an entry of the PPM Pk at the i th

row and j th column. Thus, there exist PPMs {Pk ∈
Pk}Kk=1 such that inlier feature vectors are selected and
corresponded in {FkPk ∈ R

d×n}Kk=1, i.e., the matrix
[vec(F1P1), . . . , vec(FKPK )] ∈ R

dn×K is rank deficient.
In the following of this paper, we also use

D({Pk}Kk=1) = [vec(F1P1), . . . , vec(FKPK )], (2)

to simplify writings of equations. In the context where
the values of {Pk}Kk=1 are determined, we also write D =
[vec(F1P1), . . . , vec(FKPK )]. Based on this low-rank
assumption, feature correspondence can be formulated as the
following problem to optimize {Pk}Kk=1

min
{Pk∈Pk }Kk=1

rank
(

D({Pk}Kk=1)
)

,

where rank(·) is a function to measure matrix rank. By intro-
ducing an auxiliary variable L (to facilitate the development
of a solving algorithm), the above problemcan also bewritten
as the following equivalent problem

min
{Pk∈Pk }Kk=1,L

rank(L)

s.t. D({Pk}Kk=1) = L. (3)

In practice, however, some inlier features characterizing
the same local appearance information of object instances
in different images could vary due to illumination change,
object pose change, or other intra-category object variations.
Some inlier features could also be missing due to partial
occlusion of object instances. Thus the low-rank assumption
used in (3) cannot be fully satisfied. To improve the robust-
ness, we introduce a sparse error term into (3) to model all
these contaminations, and modify the formulation (3) as

min
{Pk∈Pk }Kk=1,L,E

rank(L) + λ‖E‖0

s.t. D({Pk}Kk=1) = L + E, (4)

where ‖ · ‖0 is �0-norm counting the number of nonzero
entries, and λ > 0 is a parameter controlling the trade-off
between rank of L and sparsity of E.

3.2 The Algorithm

The optimization problem (4) is not directly tractable due to
the following aspects: (1) both rank(·) and ‖ · ‖0 are non-
convex, discrete-valued functions, minimization of which
is NP-hard; (2) entries of {Pk}Kk=1 are constrained to be
binary, resulting in a difficult nonlinear integer programming
problem. To make it tractable, we first consider the recent
convention of replacing rank(·) and ‖ · ‖0 with their convex
surrogates ‖ · ‖∗ and ‖ · ‖1 respectively (Candès et al. 2011),
where ‖ · ‖∗ denotes nuclear norm (sum of the singular val-
ues) and ‖ · ‖1 is �1-norm. Applying the same relaxation to
(4) yields
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min
{Pk∈Pk }Kk=1,L,E

‖L‖∗ + λ‖E‖1

s.t. D({Pk}Kk=1) = L + E,

Pk = {

Pk ∈ {0, 1}nk×n
∣
∣1�

nkP
k = 1�

n ,

Pk1n ≤ 1nk
}

, ∀ k = 1, . . . , K , (5)

where we have written the constraints of {Pk}Kk=1 in matrix
form, and 1nk (or 1n) denotes a column vector of length nk (or
n) with all entry values of 1.We refer to the problem (5) as our
framework of Robust Object Matching using Low-rank (and
sparse) constraints (ROML). In this paper, we set the para-
meter λ = 5/

√
dn (except experiments in Sect. 5.1), which

is suggested by the closely related work of Robust Principal
Component Analysis (RPCA) (Candès et al. 2011).1

The problem (5) involves jointly optimizing a set of K
PPMs. As reviewed in Sect. 2, it is an instance of MiAP
and proved to be NP-hard, for which approximate solution
methods are practically used. To solve (5), note that it is
a formulation of regularized consensus problem, where the
local variables vec(FkPk) (function of Pk), k = 1, . . . , K , in
D({Pk}Kk=1) are constrained to be equal to components (col-
umn vectors) of the global variable L + E, which is further
regularized in the objective function. In literature, consen-
sus problems are popularly solved using ADMM method in
the context of distributed optimization (Boyd et al. 2011;
Bertsekas 1999; Bertsekas and Tsitsiklis 1989). The gen-
eral ADMMmethod decomposes a global problem into local
subproblems that can be readily solved. For consensus prob-
lems such as (5), ADMM decomposes optimization of L, E,
and {Pk}Kk=1 into subproblems that update L, E, and each of
{Pk}Kk=1 respectively. Thus joint optimization over {Pk}Kk=1
boils down as independent optimization of individual Pk ,
k = 1, . . . , K , in each ADMM iteration. However, the sub-
problem to update each Pk concerns with nonlinear integer
programming. It is essential to understand the convergence
property of ADMM under this condition, which we will
discuss in Sect. 3.2.2 after presentation of our algorithmic
procedure.

1 Suppose we have a data matrix D ∈ R
m1×m2 , which is formed

by superposition of a low-rank matrix L and a sparse matrix E, i.e.,
D = L + E. Assume the low-rank matrix L is not sparse, and the
sparse matrix E is not low-rank (e.g., the support pattern of E may
be selected uniformly at random). RPCA proves that the matrices L
and E can be recovered exactly via a convex program called Principal
Component Pursuit: minLrpca ,Erpca ‖Lrpca‖∗ + λrpca‖Erpca‖1 s.t. D =
Lrpca + Erpca , provided that the rank of L is not too large, and that
E is reasonably sparse. Under these assumptions, a universal choice
of the parameter λrpca = 1/

√
max(m1,m2) is identified in the the-

oretical analysis of RPCA. In practical data, assumptions used in the
theoretical proof of RPCA are not generally satisfied. RPCA suggests
setting λrpca = C/

√
max(m1,m2), where C is a constant which can

be adjusted properly to improve performance on practical data.

We first write the augmented Lagrangian of (5) as

Lρ(L,E, {Pk ∈ Pk}Kk=1,Y) = ‖L‖∗ + λ‖E‖1
+ρ

2
‖L + E − D({Pk}Kk=1) + 1

ρ
Y‖2F , (6)

where Y ∈ R
dn×K is a matrix of Lagrange multipliers, ρ is

a positive scalar, and ‖ · ‖F denotes the Frobenius norm. The
ADMM algorithm iteratively estimates one of the matrices
L, E, {Pk}Kk=1, and the Lagrange multiplierY by minimizing
(6), while keeping the others fixed. More specifically, our
ADMM procedure consists of the following iterations

Lt+1 = argmin
L

Lρ

(

L,Et , {Pk
t }Kk=1,Yt

)

, (7)

Et+1 = argmin
E

Lρ

(

Lt+1,E, {Pk
t }Kk=1,Yt

)

, (8)

{Pk
t+1}Kk=1 = argmin

{Pk∈Pk }Kk=1

Lρ

(

Lt+1,Et+1, {Pk}Kk=1,Yt
)

, (9)

Yt+1 = Yt + ρ
(

Lt+1 + Et+1 − Dt+1
)

, (10)

where t denotes the iterationnumber andwecomputeDt+1 =
[vec(F1P1

t+1), . . . , vec(F
KPK

t+1)] after step (9).
The problems (7) and (8) for updating the global variables

L and E are both convex programs. They can be explicitly
written as the forms of the proximal operators associated
with a nuclear norm or an �1-norm respectively (Lin et al.
2010). To spell out the solutions, define the soft-thresholding
operator for scalars as Tτ [x] = sign(x) · max{|x | − τ, 0},
with τ > 0. When applied to vectors/matrices, it operates
element-wisely. The optimal solution to (7) and (8) can be
written as

(U,S,V) = svd
(

Dt − Et − 1

ρ
Yt

)

,

Lt+1 = UT 1
ρ

[

S
]

V�, (11)

Et+1 = T λ
ρ

[

Dt − Lt+1 − 1

ρ
Yt

]

. (12)

Derivations of the above solution to problems (7) and (8) can
be found in Appendix 2.

Optimization of (9) is more involved than those of (7) and
(8), mostly because of the binary constraints enforced on the
entries of {Pk}Kk=1. Given updated variables Lt+1, Et+1, and
Yt , we explicitly write the problem (9) as

min
{Pk∈Pk }Kk=1

ρ

2

∥
∥Lt+1 + Et+1 + 1

ρ
Yt

−[vec(F1P1), . . . , vec(FKPK )]∥∥2F . (13)

We observe that (13) can be decoupled into K independent
subproblems, each of which concerns with optimization of
one of the local variables {Pk}Kk=1. The kth subproblem to
update Pk is written as
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min
Pk∈Pk

ρ

2

∥
∥
(

Lt+1 + Et+1 + 1

ρ
Yt

)

ek − vec(FkPk)
∥
∥2
2, (14)

where ek denotes a unit column vector with all entries set to 0
except the kth one, which is set to 1. Denote θk = vec(Pk) ∈
R
nnk , Gk = In ⊗ Fk ∈ R

dn×nnk , Jk = In ⊗ 1�
nk ∈ R

n×nnk ,
Hk = 1�

n ⊗ Ink ∈ R
nk×nnk , ⊗ is the Kronecker product, and

In (or Ink ) is the identity matrix of size n × n (or nk × nk).
Using the fact vec(XYZ) = (Z�⊗X)vec(Y), we can rewrite
(14) as the following equivalent problem to update θk

min
θk

ρ

2
θk�Gk�Gkθk − e�

k

[

Y�
t + ρ

(

Lt+1 + Et+1
)�]

Gkθk

s.t. Jkθk = 1n, Hkθk ≤ 1nk , θk ∈ {0, 1}nnk . (15)

(15) appears to be a difficult integer constrained quadratic
program. To solve it, a common approach is to relax the con-
straint set of (15) into its convex hull, and then project back
the attained continuous-domain results by either thresholding
or more complicated methods, which, however, cannot guar-
antee to get the optimal solution (Leordeanu et al. 2009).
For the ROML problem (5), we assume that distinctive
information of each column vector in any Fk of {Fk}Kk=1 is
represented by the relative values of its elements, rather than
their absolute magnitude. In other words, multiplying each
feature vector by a scaling factor does not change the pattern
of each feature. Based on this assumption, we prove that (15)
is equivalent to a linear sum assignment problem (Burkard
et al. 2009).

Theorem 1 For the ROML problem (5), assuming distinc-
tive information of each column vector in any Fk of {Fk}Kk=1
is represented by the relative values of its elements, (15) is
always equivalent to the following formulation of linear sum
assignment problem

min
θk

−e�
k

[

Y�
t + ρ

(

Lt+1 + Et+1
)�]

Gkθk

s.t. Jkθk = 1n, Hkθk ≤ 1nk , θk ∈ {0, 1}nnk . (16)

Proof We prove the equivalence by showing that, under the
considered assumption for theROMLproblem (5), the objec-
tive function of (15) is equivalent to a linear function, as
written in (16), which together with the constraints of (16),
turns out to be a formulation of LSAP. Denote pkj ∈ R

nk ,

j = 1, . . . , n, as columns of PPM Pk . From the definitions
of Gk and θk , it is straightforward to show that

Gkθk = vec(FkPk) = [

(Fkpk1)
�, . . . , (Fkpkn)

�]� (17)

Since Fk = [fk1 , . . . , fknk ] ∈ R
d×nk , and from the constraints

of Pk (explicitly stated in (5)), it is clear that each subvector
Fkpkj , j = 1, . . . , n, of (17) selects one column feature vector

from Fk , with a unique index from the set {1, . . . , nk}. From
(17) we also have

θk�Gk�Gkθk = ‖Gkθk‖22 =
n

∑

j=1

‖Fkpkj‖22. (18)

In case of nk = n, i.e., there exist no outliers in the considered
feature-based object matching, (18) is equal to a constant
value no matter what feasible Pk or θk is used. In the more
general case of nk > n, since information of each of the
feature vectors fki , i = 1, . . . , nk , is preserved by relative
values of its elements, we can always normalize them so that
they have an equal Euclidean norm, i.e., ‖fk1‖2 = · · · =
‖fknk‖2 = ck . And (18) is again equal to a constant value
no matter what feasible Pk or θk is used. We thus finish the
proof. 
�

The LSAP (16) can be exactly and efficiently solved using
a rectangular-matrix variant of the Hungarian algorithm
(Burkard et al. 2009). After solving K (16)-like problems for
k = 1, . . . , K , we get the updates of {θkt+1}Kk=1 and compute
Dt+1 = [

G1θ1t+1, . . . ,G
K θK

t+1

]

. The Lagrange multiplier
matrix Yt+1 is then updated using (10). Our ADMM pro-
cedure iteratively performs the steps (7), (8), (9), and (10),
until a specified stopping condition is satisfied. Normally,
the primal and dual residuals can be used as the stopping
criteria.2 To improve the convergence, a common practice
is to use a monotonically increasing sequence of {ρt }. We
also adopt this strategy. The pseudocode of our algorithm is
summarized in Algorithm 1.3

3.2.1 Discussion of Solving ROML Using ADMM

Solving the ROML formulation (5) establishes n sets of con-
sistent feature correspondences across the given K images.
In other words, it aims to find n “good” ones out of the total
1
n! (

nk !
(nk−n)! )

K feasible solutions, assuming n1 = · · · = nk =
· · · = nK . As reviewed in Sect. 2, ROML belongs to the
more general class of MiAP. To see how ROML relates to
MiAP, we write the standard MiAP formulation (Burkard

2 For the ROML problem (5), the primal residual is Rt+1
pri. = Lt+1 +

Et+1−Dt+1, and the dual residuals areRt+1
dual,L = ρ(Et +Dt −Et+1−

Dt+1) (w.r.t. the variable L) and Rt+1
dual,E = ρ(Dt − Dt+1) (w.r.t. the

variable E).
3 We note that the obtained solution {Pk}Kk=1 by solving the ROML
problem (5) using Algorithm 1 belongs to a group of equivalent solu-
tions, since there is no constraint on the order of columns in any of
{Pk}Kk=1. It is always easy to transform {Pk}Kk=1 to some canonical form,
e.g., by permuting columnsof eachof {Pk}Kk=1 according to sorted image
coordinates of feature points in any of the K images. Without loss of
generality we assume the solution {Pk}Kk=1 given by Algorithm 1 has
been transformed to some canonical form for ease of evaluation.
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Algorithm 1: Solving ROML by ADMM

input : Feature vectors Fk = [fk1 , . . . , fknk ] ∈ R
d×nk (normalized

as ‖fk1‖2 = · · · = ‖fknk ‖2 = ck when there exist outliers),
k = 1, . . . , K , the number n of inliers, weight λ > 0,
and initialization of {Pk

0 ∈ Pk}Kk=1, L0 = 0, E0 = 0,
Y0 = 0, and ρ0 > 0.

while not converged do1

(U,S,V) = svd
(

Dt − Et − 1
ρt
Yt

)

.2

Lt+1 = UT 1
ρt

[

S
]

V�.3

Et+1 = T λ
ρt

[

Dt − Lt+1 − 1
ρt
Yt

]

.4

for each k do5

let θkt = vec(Pk
t ), G

k = In ⊗ Fk , Jk = In ⊗ 1�
nk ,6

Hk = 1�
n ⊗ Ink , solve the LSAP problem (16) to get the

update θkt+1.

end7

Dt+1 = [

G1θ1t+1, . . . ,G
K θK

t+1

]

.8

Yt+1 = Yt + ρt
(

Lt+1 + Et+1 − Dt+1
)

.9
ρt+1 ← ρt .10
t ← t + 1.11

end12

output: solution {Pk
t }Kk=1, Lt , and Et .

et al. 2009) for the considered feature-based object matching
problem as

min{zi1,i2,...,iK }

n1∑

i1=1

n2∑

i2=1

· · ·
nK∑

iK=1

ai1,i2,...,iK zi1,i2,...,iK

s.t.
n2∑

i2=1

n3∑

i3=1

· · ·
nK∑

iK=1

zi1,i2,...,iK ≤ 1 , i1 = 1, . . . , n1

n1∑

i1=1

n3∑

i3=1

· · ·
nK∑

iK=1

zi1,i2,...,iK ≤ 1 , i2 = 1, . . . , n2

...
n1∑

i1=1

n2∑

i2=1

· · ·
nK−1∑

iK−1=1

zi1,i2,...,iK ≤ 1 , iK = 1, . . . , nK

n1∑

i1=1

n2∑

i2=1

· · ·
nK∑

iK=1

zi1,i2,...,iK = n , zi1,i2,...,iK ∈ {0, 1}, (19)

where ik ∈ {1, . . . , nk} indexes the nk feature vectors
extracted from the kth image, k = 1, . . . , K . The global deci-
sion variable zi1,i2,...,iK is equal to 1 when the corresponding
feature points are matched across the K images, with each
feature from one of the K images, and ai1,i2,...,iK denotes
the cost of this matching. By factoring/reformulating the set
of global decision variables {zi1,i2,...,iK } as PPMs {Pk}Kk=1
defined by (1), we get the following equivalent problems

min
{Pk∈Pk }Kk=1

n
∑

j=1

n1∑

i1=1

· · ·
nK∑

iK=1

ai1,...,iK

K
∏

k=1

pkik , j , (20)

min
{Pk∈Pk }Kk=1

n
∑

j=1

n1∑

i1=1

· · ·
nK∑

iK=1

∥
∥[f1i1, . . . , fKiK ]∥∥∗

K
∏

k=1

pkik , j , (21)

min
{Pk∈Pk }Kk=1

n
∑

j=1

∥
∥[F1p1j , . . . ,F

KpK
j ]∥∥∗, (22)

where j ∈ {1, . . . , n} indexes the n inlier matches, and pkik , j
and pkj denote the (ik, j) entry and j th column of Pk respec-
tively. In (21) and (22), we have used nuclear norm of the
matrix formed by a candidate match of K feature vectors
as the cost coefficient ai1,...,iK . As an instance of MiAP,
jointly optimizing the set of PPMs in the above equivalent
problems is NP-hard. Approximate methods are thus impor-
tant to get practically meaningful solutions. In fact, due to
inevitable noise in cost coefficients, e.g., that generated by
various variations of object instances in different images, it
is often sufficient to find suboptimal solutions that are within
the noise level of the optimal one.

To understand how we have developed an approximate
method in preceding sections, we slightly modify (22) by
vertically arraying the n matrices [F1p1j , . . . , F

KpK
j ], j =

1, . . . , n, as a bigger matrix, resulting in the following prob-
lem to optimize {Pk}Kk=1

min
{Pk∈Pk }Kk=1

∥
∥[vec(F1P1), . . . , vec(FKPK )]∥∥∗, (23)

which turns out to be equivalent to a nuclear norm relaxed
version of (3). Indeed, by introducing the global variable L
in (3), and also the global variables L and E in (4) and (5)
for a robust extension, we essentially formulate the multi-
image object matching version of MiAP as a regularized
consensus problem (Bertsekas and Tsitsiklis 1989), with
‖L‖∗ + λ‖E‖1 as the regularization term. It becomes well
suited to be solved using distributed optimization methods
such as ADMM. As in the presented ADMM procedure (7)–
(10), the “fusion” steps (7) and (8) collect information of the
t th iteration {Pk

t }Kk=1 to update L and E, and the “broadcast”
step (9) independently updates each Pk of {Pk}Kk=1, using the
updated fusion centersLt+1 andEt+1. Our proposedADMM
method thus belongs to a strategy of “fusion-and-broadcast”,
for ROML and the more general MiAP.

3.2.2 Convergence Analysis

The ADMM method is proven to converge to global opti-
mum under some mild conditions for linearly constrained
convex problem whose objective function is separable into
two individual convex functions with non-overlapping vari-
ables (see Goldfarb et al. 2013 and references therein). In
our case, the ROML problem (5) is nonconvex, due to the
binary constraint associated with {Pk}Kk=1. The convergence
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property of ADMM for nonconvex problems is still an open
question in theory. However, it is not uncommon to see that
ADMM has served a powerful heuristic for some nonconvex
problems in practice (Zhang 2010; Shen et al. 2014). In the
following, we present simulated experiments that demon-
strate the excellent convergence property of ADMM for
ROML.

Specifically,we generated synthetically K = 30 groups of
vectors simulating extracted feature vectors from K images,
with dimension of each vector f as d = 50. There were both
inlier and outlier feature vectors in each group. The inliers
were produced by randomly generating d-dimensional vec-
tors whose entries were drawn from i.i.d. normal distribution,
and were shared in each of the K groups. The outliers were
similarly produced by randomly generating d-dimensional
vectors following i.i.d. normal distribution, but were inde-
pendently generated for each group. We then added sparse
errors of large magnitude to both inlier and outlier vectors.
For each vector f , the error values were uniformly drawn
from the range [−2max(abs(f)), 2max(abs(f))]. Finally, we
normalized all vectors to constant �2-norm to fit with our
algorithmic settings. We fixed the number of inliers in each
group as n = 10, and investigated the convergence and
recovery properties of our algorithm under varying numbers
of outliers and ratios of sparse errors. The number of out-
liers in each group was ranged in [0, 40], and the ratio of
sparse errors in each vector was ranged in [0, 0.8]. Denote
the ground truth PPMs of any test setting as {Pk∗}Kk=1, and the
recovered PPMs as {Pk}Kk=1. The recovery rate is computed

as
∑K

k=1 ‖Pk ◦ Pk∗‖0
/∑K

k=1 ‖Pk∗‖0, where ◦ is Hadamard
product. For each setting of outlier number and sparse error
ratio, we run 5 random trials and averaged the results.
Figure 1b reports the recovery rates under different set-
tings, which shows that our algorithm works perfectly in a
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Fig. 1 Simulation of Algorithm 1, using 30 groups of synthetic feature
vectors. The number of inliers in each group is fixed as 10. The number
of outliers in each group is ranged in [0, 40], and the ratio of sparse errors
in each vector is ranged in [0, 0.8]. Each setting of outlier number and
sparse error ratio is tested with 5 random trials. a Convergence plot in
terms of the primal residual and objective function for 5 random trials
of one test setting (the outlier number is 32 and sparse error ratio is
0.4); b recovery rates under different settings of outlier number and
sparse error ratio, obtained by averaging over 5 random trials for each
test setting

large range of outlier numbers and ratios of sparse errors.
For one of them (the outlier number is 32 and sparse
error ratio is 0.4), we plot in Fig. 1a its convergence
curves of 5 random trials in terms of the primal residual
(‖L + E − D‖F ) and objective function (‖L‖∗ + λ‖E‖1).
Convergence properties under other settings are similar to
Fig. 1a.

3.2.3 Computational Complexity

For ease of analysis we assume here n1 = · · · = nk = · · · =
nK > n. Using an efficient implementation of the Hungarian
algorithm (Burkard et al. 2009), the complexity for solving
the LSAP isO

(

n3k
)

. The overall complexity for each iteration
ofAlgorithm1 isO

(

Kn3k+Kdn2nk+K 2dn
)

. The number of
iterations for Algorithm 1 to converge depends on the initial
value of ρ0 and the factor at which ρt increases after each
iteration. If ρt increases too fast, it has the risk of converging
to worse local optima (Lin et al. 2010). In this paper, except
experiments reported in Sect. 5.1, we always set ρ0 = 1e−4

and increase it iteratively with a factor of 1.001. Under this
setting, it normally takes about 3000 iterations for Algorithm
1 to converge.

The complexity analysis presented above suggests that the
practical computation time of solving Algorithm 1 depends
on parameter values of n, nk , K , and d. The feature dimen-
sionality d is usually application dependent, and can be
reduced using dimensionality reduction techniques, e.g.,
PCA, when it is very large. To give an idea on the practi-
cal efficiency of Algorithm 1 under different settings of n,
nk , and K , especially when values of these parameters are
increased with orders of magnitude, we present simulated
experiments using synthetic data, which were generated sim-
ilarly as in Sect. 3.2.2. More specifically, we fixed d = 50,
and added sparse errors in each feature vector with a ratio
of 0.2. We conducted these experiments on an Intel Xeon
CPU running at 2.8GHz, using Matlab implementation of
Algorithm 1. Table 1 reports the practical computation time.
Table 1 suggests that the running time increases greatly when
the number of inliers (value of n) increases with an order of
magnitude from 10 to 100, and it increases (roughly) lin-

Table 1 Simulation on practical computation time (seconds) of Algo-
rithm 1 under different parameter settings of n, nk , and K

nk = 100 nk = 1000 nk =10,000

(n = 10, K = 10) 99.62 95.10 483.27

(n = 100, K = 10) 9265.12 8495.03 9013.67

(n = 10, K = 100) 821.61 898.53 4669.64

(n = 100, K = 100) 75,802.31 83,114.28 91,263.45

All experiments are conducted on an Intel Xeon CPU running at
2.8GHz, using Matlab implementation of Algorithm 1
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early with the number of images (value of K ), and may not
necessarily increase with the number of interest points per
image (value of nk). Notably, Table 1 tells that Algorithm 1
becomes prohibitively slowwhen the problem scales go up to
the level of n = 100 and K = 100, suggesting the challenge
of applyingROML to large-scale featurematching problems.
In Sect. 7, we discuss this issue in more details and suggest
promising future directions to pursue.

3.2.4 Estimating the Number of Inliers

Up to now we have assumed that the number of inliers
is known for a given image set. This might be a strong
assumption. In order to investigate how performance of
ROML is influenced by this prior knowledge, we conducted
simulated experiments that take different values of n, assum-
ing different numbers of inliers, as inputs of Algorithm 1.
More specifically, we generated K = 30 groups of syn-
thetic feature vectors simulating extracted features from K
images, similarly as did in Sect. 3.2.2. There were nk = 30,
k = 1, . . . , K , feature vectors including both inliers and
outliers in every kth group, with dimension of each vector
f as d = 50. The ground truth number of inliers was 10
in each group. The inlier feature vectors were generated by
randomly drawing as vector entries from i.i.d. normal dis-
tribution, and were shared in each of the K groups. The
outliers were similarly produced, but were independently
generated for each group. We then added sparse errors of
large magnitude to both inlier and outlier vectors. For each
vector f , the error values were uniformly drawn from the
range [−2max(abs(f)), 2max(abs(f))]. We finally normal-
ized all vectors to constant �2-norm. In this investigation, we
considered the test settings that the ratio of sparse errors in
each feature vector was either 0.2 or 0.4.

By setting integer values of n increasingly from n = 1 to
n = nk , we compared in each of the nk cases the identified
and matched feature vectors from the K groups by ROML
(via Algorithm 1), with the ground truth inlier features dis-
tributed in these K groups. We introduce two measures to
quantify these comparisons, namelyMatch Ratio and Identi-
ficationRatio,4 which are similar to themeasures of precision

4 From any given K groups of feature vectors, we can enumerate
K !

(K−2)!2! pairs of groups. For each group pair, assume ROML (or
other feature matching methods) identify n pair-wise correspondences
between feature vectors of these two groups. Denote the number of
ground truth correspondences between inlier features of these two
groups as n∗, and the number of identified ground truth correspondences
by ROML (or other feature matching methods) as n̄. We define Match
Ratio as

∑
n̄/

∑
n, and Identification Ratio as

∑
n̄/

∑
n∗, where

∑

sums over all the K !
(K−2)!2! group pairs. Note that when n = n∗, i.e., set-

ting value of n as the ground truth number of inliers, the two introduced
measures give equal results. Our definitions of the two measures using
notions of pair-wise matching are to facilitate comparisons between
ROML and traditional feature matching methods, such as graph
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Fig. 2 Simulation for estimating the number of inliers, where two
experiment settings are considered (sparse error ratios are 0.2 and 0.4
respectively), and each setting is testedwith 5 random trials. The ground
truth number of inliers is 10 in all these experiments. a Performance of
ROML against varying assumed numbers of inliers (varying values of n
as inputs of Algorithm 1), measured by Match Ratio and Identification
Ratio. Each curve is obtained by averaging over 5 random trials. bMax-
imal nuclear norm of the established n feature-level correspondences by
ROML (the γn in Eq. (24)) against varying assumed numbers of inliers
(varying values of n as inputs of Algorithm 1). Each curve corresponds
to one of the total 10 experiments

and recall in information retrieval. Figure 2a reports results
ofMatchRatio and IdentificationRatio, whichwere obtained
by averaging over 5 random trials for each setting of sparse
error ratio. Figure 2a suggests thatwhen the value ofn is close
to the ground truth number of inliers, ROML performs better
in terms of giving a balanced result of Match Ratio and Iden-
tificationRatio, which verifies the importance of knowing the
true number of inlierswhen applyingROML to feature-based
object matching. Unfortunately, in many practical applica-
tions such as object recognition or 3D reconstruction, this
information is usually unknown for a given image set. It
becomes essential to develop a mechanism to estimate the
number of inliers, in order to apply ROML to these practical
problems.

Our consideration of estimating the number of inliers is
motivated by the exact low-rank property that ROML lever-
ages for feature matching. Given a value of n, ROML estab-
lishes n feature-level correspondences across the K groups
by solving Algorithm 1, and forms a matrix D ∈ R

dn×K ,
defined as Eq. (2), using the obtained PPMs {Pk}Kk=1. Each
of the n feature-level correspondences consists of K feature
vectors respectively from the K groups, and corresponds to
a submatrix of D, which we denote as D j ∈ R

d×K with
j ∈ {1, . . . , n}. Equation (2) indicatesD = [D�

1 , . . . ,D�
n ]�.

When any j th correspondence is formed by inlier features,
the corresponding D j would be rank deficient, and numeri-
callywould have lower nuclear norm.Conversely, the nuclear
norm would be higher. We thus consider using the measure
of ‖D j‖∗, j = 1, . . . , n, for estimating the number of inliers.

Footnote 4 continued
matching (Torresani et al. 2008; Cho et al. 2010; Leordeanu and
Hebert 2005), which work in the setting of matching between a pair
of images/groups. Section 5 presents such comparisons.
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More specifically, given a data set of K groups of feature vec-
tors, we solve a series of ROML problems (via Algorithm 1)
with values of n set increasingly from n = 1 to n = nk . For
any specific value of n, a matrixD ∈ R

dn×K can be obtained
when Algorithm 1 converges. Define maximal nuclear norm
of feature-level correspondences as

γn = max
j=1,...,n

‖D j‖∗, (24)

which computes maximum of the nuclear norms of the estab-
lished n feature-level correspondences {D j }nj=1. Given the
series {γ1, . . . , γn} obtained by increasingly setting n = 1
to the current n value, we further define γ̄n = ∑n

i=1 γi/n,
which averages this series. Based on the notions of γn and
γ̄n , we propose a simple scheme that estimates the number
of inliers as the current value of n if

(γn+1 − γ̄n)/γ̄n > δ, (25)

where δ is a scalar parameter. To investigate the efficacy of
this proposed scheme, we plot in Fig. 2b the curves of γn
values from n = 1 to n = nk , for those simulated experi-
ments reported in Fig. 2a. Figure 2b shows that for any curve
corresponding to one of these simulated experiments, there
is a clear stepping of γn values when n is set as the ground
truth number of inliers, indicating that γn is a good measure
for estimation of inlier numbers. Our use of γ̄n in (25) is
to improve the estimation robustness. We also observe from
Fig. 2b that the gap of curve stepping becomes narrowerwhen
the ratio of sparse errors is increased in each feature vector,
suggesting less efficacy of the proposed scheme (25). This is
reasonable since when errors in feature vectors increase, it
becomes less distinctive between inlier and outlier features.

Simply put, our proposed scheme starts from setting n =
1, and solves a series of ROML problems with increasing
values of n, until the condition (25) is satisfied. The ratio
computed in (25) is numerically stable w.r.t. varying values
of d (feature dimension) and K (number of groups/images).
We set the parameter δ = 0.05 throughout this paper. It gives
perfect estimation of the true numbers of inliers for all the
simulated experiments reported in this section. In Sect. 5.2,
we report experimentswhen applying this scheme topractical
data.

3.2.5 Detection of the True Inliers

By solving the problem (5), ROML is able to identify n fea-
tures from each of a set of K images and establish their
correspondences. However, these nK features are not neces-
sarily all the true inliers. This is particularly the case when
some true inlier features are contaminated with noise, e.g.,
due to object appearance variations caused by illumination or
pose changes, and when some inliers are missing, e.g., due

to partial occlusion of object instances. Detecting the true
inliers out of the nK features is practically useful for appli-
cations such as 3D reconstruction and object recognition.

We have introduced an error term E ∈ R
dn×K in (5)

to improve the robustness of ROML against the aforemen-
tioned contaminations of inlier features. One may think of
using E for detection of the true inliers, e.g., by thresh-
olding �1-norms of the nK d-dimensional subvectors in E
(n subvectors per column). However, the ROML formula-
tion (5) is a non-convex problem. It decomposes out sparse
errors into E mainly for obtaining better PPMs {Pk}Kk=1, so
that potential inliers from the K images can be identified
and matched in D = [vec(F1P1), . . . , vec(FKPK )]. By the
non-convex problem nature of (5), the obtainedE is not guar-
anteed to be consistent with those noise contaminating inlier
features, especially when inlier features are heavily con-
taminated and become less distinctive from outliers. This
is different from the RPCA problem (Candès et al. 2011)
where an exact solution of the low-rank matrix and sparse
error matrix can be obtained with theoretical guarantee. To
detect the true inliers from the selected features by ROML,
we propose an alternative scheme that first solves a RPCA
problem: minLrpca ,Erpca ‖Lrpca‖∗ + λrpca‖Erpca‖1 s.t. D =
Lrpca + Erpca , using the obtained D from ROML as the
input data, where λrpca = 1/

√
dn as theoretically derived

in RPCA (Candès et al. 2011). The proposed scheme then
thresholds �1-norms of the nK d-dimensional error subvec-
tors in Erpca ∈ R

dn×K , which are the decomposed error
vectors respectively for the selected nK features by ROML.
For any j th selected feature from the kth image, we deter-
mine it as a true inlier if

∥
∥[Erpca] jd−d+1: jd,k

∥
∥
1 < ξ, (26)

where [Erpca] jd−d+1: jd,k denotes the error subvector with
j ∈ {1, . . . , n} and k ∈ {1, . . . , K }, and ξ is a scalar para-
meter. The scheme (26) is practically useful if magnitude of
Erpca is stable when applying ROML (and the subsequent
RPCA problem) to various data applications, so that ξ is less
concerned with tuning. Note that magnitudes of entries in
Erpca are controlled by two factors: magnitudes of entries
in the feature vectors {Fk}Kk=1, and levels of noise contami-
nating these feature vectors. Since all the feature vectors in
{Fk}Kk=1 have been normalized in Algorithm 1, magnitude of
Erpca is less influenced by the first factor. To investigate how
the scheme (26) performs w.r.t. the second factor, we con-
ducted simulated experiments using varying levels of noise
and ratios of missing true inliers. Given unit �2-norm of nor-
malized feature vectors in {Fk}Kk=1, we set ξ = 4 for all
relevant experiments of inlier detection reported in this paper.

More specifically, we randomly generated synthetic data
similarly as did in Sect. 3.2.4. We set K = 30 and nk = 30
for k = 1, . . . , K . Dimension of each feature vector was set
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Table 2 Simulation for detection of true inliers, using the proposed
scheme (26)

Ratios of
miss. inliers

5% 10% 30% 50%

Noise L. I 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

Noise L. II 1.00/1.00 1.00/1.00 1.00/0.99 0.99/0.98

Noise L. III 1.00/0.99 1.00/0.96 1.00/0.95 0.99/0.92

Synthetic data are generated under 12 test settings: the ratios of sparse
errors in each feature vector are 10% (Noise Level I), 30% (Noise Level
II), or 50% (Noise Level III), and the ratios of missing inliers in each
group are 5, 10, 30, or 50%. Results for each setting are obtained by
averaging over 5 random trials and presented in the format of Preci-
sion/Recall

as d = 50. Sparse errors were added to feature vectors in the
same way as in Sect. 3.2.4. The number of inliers was set as
n = 10, which gives a total of nK = 300 true inliers from
the K groups/images. After inlier features were generated,
we randomly replaced a certain number of them with addi-
tionally generated outlier features, simulating the situation
of missing inliers. In this investigation, we considered the
test settings where the ratios of sparse errors in each feature
vector were ranged in [0.1, 0.5], simulating increased lev-
els of noise, and the ratios of missing inliers for each group
were ranged in [0.05, 0.5]. Under each setting, performance
of the scheme (26) is measured by precision and recall. Pre-
cision is computed as the number of detected true inliers
divided by the total number of detected features, and recall
is computed as the number of detected true inliers divided by
the total number of true inliers contained in the K groups.
We run 5 random trials and averaged the results under each
setting. Table 2 reports these simulated experiments, which
suggests that precision scores of detecting the true inliers by
the scheme (26) are very high for the considered test settings
(in fact perfect precision for most of the settings). When the
levels of noise (ratios of sparse errors) contaminating fea-
ture vectors increase, magnitudes of the decomposed error
subvectors in Erpca for the true inliers also increase, and
become less distinctive from those of outliers, resulting in
slightly reduced recall scores. Nevertheless, results in Table
2 show that in a wide range of noise and missing inlier set-
tings, the proposed scheme (26) is effective for detecting the
true inliers. In Sect. 5.2, we also report experiments of apply-
ing (26) to practical data for detection of true inliers.

4 Choices of Feature Types and Their Applicable
Spectrums

In the previous sections, we have represented an image as
a set of features, where features generally refer to vectors
characterizing image points and local regions centered on
them. The task of object matching is then posed as Problem

1. Depending on different applications, these features can be
chosen as either image coordinates, local region descriptors,
or combination of themencoding both spatially structural and
local appearance information. In the following, we present
details of different choices of feature types and their applica-
ble spectrums for robust object matching.

4.1 Image Coordinates

Given a set of points in an image, their coordinates can be
directly used as features. In fact, coordinates of a set of inlier
points in an image encode geometric relations among them,
and it is the geometric structure of these points that deter-
mines the object pattern, and also provides a constraint for
use in object matching. Image coordinates based features
have been intensively used in early shape matching works
(Scott and Longuet-Higgins 1991; Shapiro 1992; Besl and
McKay 1992; Chui and Rangarajan 2003; Belongie et al.
2002).

For a moving rigid object in a video sequence or images
of a rigid object captured from different viewpoints, denote
fki = [xki , yki ]� ∈ R

2, i = 1, . . . , nk , as image coordinates
based nk features extracted from the kth image. Let Fk =
[fk1 , . . . , fknk ] ∈ R

2×nk . It has been shown in Tomasi and
Kanade (1992) that the matrix, defined by

D′({Pk}Kk=1) = [

(F1P1)�, . . . , (FKPK )�
]� ∈ R

2K×n,

(27)

is highly rank deficient (at most rank 4 when considering
translation and there is no measurement noise), if correct
PPMs {Pk}Kk=1 are used so that n inlier points can be selected
from each of {Fk}Kk=1 and corresponding points {fkj }Kk=1,
j ∈ {1, . . . , n}, can be aligned in the same column of D′.
(27) is different from the formation of D({Pk}Kk=1) in (2).
By applying the same low-rank and sparse constraints as in
(5), we will show in Sect. 5.1 that image coordinates based
features are very useful for matching rigid objects.

4.2 Local Region Descriptors

It is also straightforward to use region descriptors charac-
terizing locally visual appearance information as features.
These include SIFT (Lowe 1999), HOG (Dalal and Triggs
2005), Geometric Blur (Berg and Malik 2001; Berg et al.
2005), GIST (Oliva and Torralba 2001), or even raw pixels
of local patches. In general, these feature descriptors have the
properties of invariance and distinctiveness. The invariance
property makes it possible to match salient features extracted
from images under geometric transformation or illumination
change, while feature distinctiveness is important to differ-
entiate between different salient regions. Features of such
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kind can be used in scenarios where they are discrimina-
tive enough for matching, or geometric constraints between
feature points are not available, such as common object local-
ization (Deselaers et al. 2012; Zhu et al. 2012). In Sect. 6,
we present how ROML can be applied to this application.

4.3 Combination of Image Coordinates and Region
Descriptors

Local region descriptors alone could be ambiguous for fea-
ture matching when there exist repetitive textures or less
discriminative local appearance in images. To improve the
matching accuracy, it is necessary to exploit the geometric
structure of inlier points that consistently appears in each
of the set of images. In literature, there are many ways to
exploit such geometric constraints, such as pair-wise com-
patibility of feature correspondences used in graph matching
(Leordeanu andHebert 2005; Torresani et al. 2008), or linear-
form constraints benefiting from a template image (Li et al.
2011; Jiang and Yu 2009). In this work, we consider a sim-
ple method introduced in Torki and Elgammal (2010). For
any interest point in each of the set of images, this method
learns a low-dimensional embedded feature vector that com-
bines information of both the local appearance and the spatial
relations of this point relative to other points in the image.
We present details of how to compute this type of learned
embedded features in Appendix 1.

As suggested by Theorem 1, when there are no outliers,
the thus learned features can be directly used in our ROML
framework. When there exist outliers in any of the set of
images, we can always normalize those features to let them
have constant �2-norm, and our method still applies. Since
this type of learned features encode both appearance and
spatial layout information, our method can potentially apply
in more general settings, such as matching of non-rigid,
articulated objects, or instances of a same object category.
Experiments in Sect. 5 show the promise.

5 Experiments

In this section, we present experiments to show the effec-
tiveness of ROML for robustly matching objects in a set
of images. We consider different testing scenarios from the
relatively simple rigid object matching, to themore challeng-
ing matching of object instances of a common category, and
matching a non-rigid object moving in a video sequence. For
these testing scenarios, we choose appropriate feature types
of either image coordinates or combination of image coordi-
nates and local region descriptors, while features of region
descriptors alone will be used in Sect. 6 for the application
of common object localization. In the following experiments
(except those in Sect. 5.1), we always set the penalty parame-
ter λ = 5/

√
dn when solving the ROML problem (5) using

Algorithm 1, where ρ was initially set as 1e−4 and iteratively
increased with a factor of 1.001.

5.1 Rigid Object with 3D Motion

The CMU “Hotel” sequence consists of 101 frames of a toy
hotel building undergoing 3D motion.5 Each frame has been
manually labelled with the same set of 30 landmark points
(Caetano et al. 2009), i.e., n = 30. We use the “Hotel”
sequence to show that ROML can be applied using image
coordinates as features for matching rigid objects. In partic-
ular, we sampled K = 15 frames out of the total 101 frames
(every 7 frames), in order to simulate the wide baseline
matching scenario. Given PPMs {Pk}Kk=1, image coordinates
of landmark points in these 15 frames were arranged into a
matrix D′({Pk}Kk=1) ∈ R

2K×n , as defined in (27). We used
Algorithm 1 to optimize a PPM for each frame, where the
penalty parameter was set as λ = 5/

√
2K , and ρ was initial-

ized as 1e−6 and iteratively increased with a factor of 1.0001.
We compare our method with representative pair-wise

graph matching methods including Dual Decomposition
(DD) (Torresani et al. 2008), SMAC (Cour et al. 2006),
and Learning Graph Matching (LGM) (Caetano et al. 2009),
which are based on either linear or quadratic assignment
formulations, and also with more related methods (Oliveira
et al. 2005; Torki and Elgammal 2010) that are able to simul-
taneously match the set of 15 frames. For the former set
of methods, matchings between a total of 105 frame pairs
need to be established. Note that although all these meth-
ods are based on image coordinates, many of them have
used the advanced shape context features (Belongie et al.
2002). To evaluate the performance of different methods,
we use the Match Ratio criteria, which is defined in Sect.
3.2.4. Table 3 reports the Match Ratios of different methods,
where results of SMAC and LGM are from Torresani et al.
(2008), Torki and Elgammal (2010), and result of RankCon
(Oliveira et al. 2005) is from our own code implementa-
tion of the method. Table 3 tells that ROML and One-Shot
(Torki andElgammal 2010) achieve the best performance (no
matching error). However, One-Shot (Torki and Elgammal
2010) uses shape context feature to characterize each land-
mark point, and it performs a low-dimensional embedding
combining information of both geometric structure and local
descriptors of landmark points, while ROML just directly
uses image coordinates. RankCon (Oliveira et al. 2005) also
exploits low-rank constraints, however, its performance is
much worse than that of ROML. This is due to the inher-
ent error-propagation nature of the method. Matchings of
landmark points in RankCon (Oliveira et al. 2005) are estab-
lished in a frame-by-frame manner; once landmarks in the
current frame are matched to those in the previous frames,

5 http://vasc.ri.cmu.edu//idb/html/motion/hotel/.
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Table 4 Match Ratios of different methods on the “Hotel” sequence
with missing landmark (inlier) points

No. of
missing
points

RankCon (Oliveira
et al. 2005) (%)

One-Shot (Torki and
Elgammal 2010) (%)

ROML

1 43 76 95

3 26 64 79

5 23 59 71

The cases of 1, 3, and 5 missing points in each frame are tested (the
corresponding ratios of missing points over the total 30 ones are 3, 10,
and 17% respectively)
Best results are highlighted in bold

the matchings cannot be corrected in the later stages, and
matching errors will inevitably propagate and accumulate.
Thus for RankCon (Oliveira et al. 2005), it is critical to make
thematchings of the first few frames accurate. Unfortunately,
the low-rank property leveraged by RankCon (Oliveira et al.
2005) is weak given only landmark points in the first few
frames. We also present result of our previous method (Zeng
et al. 2012) (Prev Zeng et al. 2012) in Table 3, which corrob-
orates our discussions on the advantage of ROMLover (Zeng
et al. 2012 in Sect. 1). It is interesting to observe that under
the setting of pair-wise matching as for methods (Torresani
et al. 2008; Cour et al. 2006; Caetano et al. 2009), ROML
still performs perfectly on the “Hotel” sequence (“ROML-
Pair” in Table 3). In fact, since the problem size of matching
each frame pair is smaller, ROML converges faster with less
iterations.

Compared to Oliveira et al. (2005), Torki and Elgam-
mal (2010), ROML has the additional advantage of being
more robust against missing inliers. To verify, we performed
another experiment by removing randomly selected land-
mark points in each frame. For each removed landmark point,
we also generated arbitrary image coordinates for it andmade
sure the generated coordinates were far enough away from
the true ones, in order to fit with the algorithmic settings of
these comparative methods. We set λ = 2/

√
2K in Algo-

rithm 1. One-Shot (Torki and Elgammal 2010) uses k-means
clustering to obtain feature correspondences in the learned
feature space. We chose its best-performing dimensionality
of learned features, and run 10 trials of k-means clustering
and averaged the results. Parameters of RankCon (Oliveira
et al. 2005) has also been tuned to its best performance. Table
4 reports the Match Ratio results, which are computed over
the non-missing points. Table 4 clearly shows that ROML is
less influenced when there exist missing inlier points.

5.2 Object Instances of a Common Category

In this section, we test how ROML performs to match object
instances belonging to a same object category. We used 6
image sets of different categories from Caltech101 (Fei-Fei
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et al. 2007), MSRC,6 and the Internet. Numbers of images
in these 6 sets ranged from 16 to 25. For each image, inter-
est points were detected by SIFT: the numbers of detected
interest points per image were from 27 to 174, out of which
we manually labelled inlier points as matching ground truth.
When some inlier points were not detected by SIFT in some
images, we also manually labelled them in order to produce
consistent sets of inlier points across the sets of images. In
these experiments, we chose the low-dimensional embed-
ded feature representation (Torki and Elgammal 2010), as
explained in Sect. 4.3, which encodes information of both
geometric structure and descriptor similarity. To learn the
embedded features, we used Geometric Blur descriptors
(Berg et al. 2005) to characterize local regions around inter-
est points, and Euclidean distances between points in each
image for measuring geometric relations. The parameters
for embedded feature learning were set as σspa. = 10 and
σdes. = 0.2 (cf. Appendix 1 for the definition of σspa. and
σdes.), and the dimensionality of learned features was set as
d = 60. Feature matching was realized by solving (5) using
Algorithm 1.

We compare ourmethodwithOne-Shot (Torki andElgam-
mal 2010), and also with several recent graph matching
methods including DD (Torresani et al. 2008), RRWM (Cho
et al. 2010), and SM (Leordeanu and Hebert 2005), and
hyper-graph matching methods including TM (Duchenne
et al. 2011), RRWHM (Lee et al. 2011), and ProbHM (Zass
and Shashua 2008). Codes of DD (Torresani et al. 2008),
RRWM (Cho et al. 2010), TM (Duchenne et al. 2011),
and RRWHM (Lee et al. 2011) are respectively from their
authors’ publicly available webpages. For ProbHM (Zass
and Shashua 2008), we used a code implementation pro-
vided by the authors of RRWHM (Lee et al. 2011). The
simple methods of One-Shot (Torki and Elgammal 2010)
and SM (Leordeanu and Hebert 2005) are based on our
own implementations. For One-Shot, we chose its best-
performing dimensionality of the learned embedded features
as our method used, and run 10 trials of k-means clustering
and averaged the results. For pair-wise graphmatchingmeth-
ods (Torresani et al. 2008; Cho et al. 2010; Leordeanu and
Hebert 2005; Duchenne et al. 2011; Lee et al. 2011; Zass and
Shashua 2008), we generated a total of K !

(K−2)!2! image pairs
for each test set with K images. These graph matching meth-
ods characterize interest points in each image by both their
spatial relations and their respective local region descriptors.
For a fair comparison, we used the same Geometric Blur
region descriptors as our method used.7 Their parameters

6 The msrc dataset http://research.microsoft.com/en-us/projects/
objectclassrecognition/.
7 We have also tried the SIFT descriptor (Lowe 1999) to character-
ize appearance of local regions around interest points. The matching Ta

bl
e
5

M
at
ch

R
at
io
s
of

di
ff
er
en
tm

et
ho

ds
on

6
im

ag
e
se
ts
of

di
ff
er
en
to

bj
ec
tc
at
eg
or
ie
s

M
et
ho
ds

R
R
W
M

(C
ho

et
al
.2
01
0)

(%
)

SM
(L
eo
rd
ea
nu

an
d
H
eb
er
t2

00
5)

(%
)

T
M

(D
uc
he
nn
e

et
al
.2
01
1)

(%
)

R
R
W
H
M

(L
ee

et
al
.2
01
1)

(%
)

Pr
ob
H
M

(Z
as
s
an
d

Sh
as
hu
a
20
08
)
(%

)
D
D

(T
or
re
sa
ni

et
al
.

20
08
)
(%

)
O
ne
Sh

ot
(T
or
ki

an
d

E
lg
am

m
al
20
10
)
(%

)
Pr
ev

(Z
en
g
et

al
.

20
12
)
(%

)
R
O
M
L

A
ir
pl
an
es

28
54

17
54

32
70

65
87

95

Fa
ce

40
57

26
54

14
64

61
53

89

M
ot
or
bi
ke

50
46

23
58

28
73

68
89

99

C
ar

26
39

12
23

12
51

50
59

81

B
us

13
25

24
43

18
52

44
64

79

B
oA

7
12

6
15

7
12

16
35

75

B
es
tr
es
ul
ts
ar
e
hi
gh

lig
ht
ed

in
bo

ld

123

http://research.microsoft.com/en-us/projects/objectclassrecognition/
http://research.microsoft.com/en-us/projects/objectclassrecognition/


188 Int J Comput Vis (2016) 117:173–197

Fig. 3 Example feature correspondences among 4 images for different image sets. For every pair top is from DD (Torresani et al. 2008), and
bottom is from our method. Red lines represent identified ground truth correspondences, and blue lines are for false ones (Color figure online)

were also tuned to their respective best performance on the
6 test sets.

Table 5 reports results of different methods in terms of
Match Ratio. Example feature correspondences for DD (Tor-
resani et al. 2008) and our method are shown in Fig. 3.
Table 5 and Fig. 3 suggest that for the relatively simple “Air-
plane”, “Motorbike”, and “Face” image sets, our method
gives very good matching results. The “Car”, “Bus”, and
“Bank of America (BoA)” sets are more difficult due to
the cluttered background, large viewpoint changes, or intra-
category variations between different instances. Our method
still gives reasonably good and consistent matching results.
Both One-Shot and our method can match multiple images
simultaneously. Our results are much better than those of
One-Shot,which shows thatOne-Shot cannot performwell in
the presence of outliers, and also that our ROML formulation
optimized by the ADMMmethod is very effective for multi-
image feature matching. Our method greatly outperforms
graph and hyper-graph matching methods. It demonstrates
that leveraging more object pattern constraints (i.e., geomet-
ric and feature similarity constraints) from multiple images
is very useful for feature matching. Moreover, Fig. 3 sug-
gests that our matching results across the 4 images are more
consistent than those from graph matching methods: another
desired property for many computer vision applications. In
Table 5, we also compare with our previous method (Zeng
et al. 2012) (Prev Zeng et al. 2012 in Table 5). Results of
Prev (Zeng et al. 2012) are obtained using the same low-
dimensional embedded features as ROML does. Table 5 tells
that on all the 6 image sets, matching accuracies of ROML
are much better than those of Prev (Zeng et al. 2012). The
improved accuracy comes from the new way of PPM opti-
mization, i.e., exactly solving an equivalent LSAP in the

Footnote 7 continued
accuracies using SIFT were slightly worse than those using Geometric
Blur for both our method and these comparative methods.
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Fig. 4 Performance of ROML using a different choices of dimension
d in low-dimensional feature learning and b different sizes of image
sets (the K values)

present paper instead of sub-optimally solving two costly
subproblems in Zeng et al. (2012), as we have discussed in
Sect. 1.

Different choices of dimension d in low dimensional
feature learning may influence our method’s performance.
In Fig. 4a, we plot our matching accuracies with different
choices of d on these 6 test sets. It shows that better results
can generally be obtained when d ≥ 40. It is expected that
our method performs well only when the size of image sets
(the K value) is relatively large. In Fig. 4b, we plot results
of our method on the 6 test sets with different choices of K .
It shows that when K > 10, our method can stably get good
results, which confirms that simultaneously matching a set
of images is very useful for robust object matching.

Except for matching accuracy, one may also be interested
in comparing matching efficiency of different methods. We
have analyzed the computational complexity of our proposed
method in Sect. 3.2.3. In Table 6, we report practical com-
putation time of different methods for those experiments
reported in Table 5. These experiments were conducted on an
Intel Xeon CPU running at 2.8GHz, usingMatlab implemen-
tation of different methods. Table 6 suggests that ROML is
much more efficient than the best-performing graph match-
ing method DD (Torresani et al. 2008), and is slightly slower
than other graph/hyper-graph matching methods. One-Shot
(Torki and Elgammal 2010) is very fast, however, its accu-
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Table 6 Computation time (seconds) of different methods on the 6 image sets used in Table 5

Methods Airplanes Face Motorbike Car Bus BoA

RRWM (Cho et al. 2010) 22.92 211.10 53.20 260.83 157.30 240.60

SM (Leordeanu and Hebert 2005) 5.44 61.71 17.61 39.31 20.61 43.15

TM (Duchenne et al. 2011) 44.01 418.30 145.38 282.92 187.39 315.04

RRWHM (Lee et al. 2011) 28.27 178.34 52.40 255.72 100.14 185.97

ProbHM (Zass and Shashua 2008) 39.58 375.48 128.45 252.04 168.70 269.31

DD (Torresani et al. 2008) 2145.56 11,714.50 3999.30 3688.99 3972.35 3827.95

One-Shot (Torki and Elgammal 2010) 0.50 1.65 1.15 1.73 1.44 1.40

Prev (Zeng et al. 2012) 874.19 6641.19 2497.25 2220.49 1665.51 2640.98

Prev (Zeng et al. 2012)-Parallel 219.79 1664.23 626.41 559.84 419.05 662.25

ROML 169.63 839.95 376.48 305.51 236.07 415.51

ROML-Parallel 52.09 236.24 110.90 106.36 74.74 124.55

All experiments were conducted on an Intel Xeon CPU running at 2.8GHz, using Matlab implementation of different methods

racy (reported in Table 5) is not satisfactory. As an improved
method of our previous work (Zeng et al. 2012), ROML is
much more efficient than (Zeng et al. 2012) as well. The
improved efficiency is again due to the new way of PPM
optimization in the present paper. In spite of this improved
efficiency, most of ROML’s computation is still on solving
LSAPs for updating the set of K PPMs (steps 5–7 in Algo-
rithm 1), which concerns with K independent subproblems
and are fully parallelizable. When implementing the PPM
optimization steps in parallel (ROML-Parallel in Table 6),
efficiency of ROML is further improved.

Results of ROML in the above experiments are obtained
by setting the value of n as the ground truth number of inliers
for each image set. In practice, however, the true number of
inliers is unknown. It is interesting to investigate howROML
performs when providing different values of n to Algorithm
1, assuming different numbers of inliers. We conducted such
experiments using the same 6 image sets. Results are plotted
in Figure 5 in terms of Match Ratio and Identification Ratio
(defined in Sect. 3.2.4). Figure 5 tells that better results can
be achieved when the values of n are close to the ground true
ones, indicating the importance of knowing this prior knowl-
edge.Wehaveproposed inSect. 3.2.4 a scheme for estimating
the true number of inliers for a given image set, i.e., the con-
dition (25). Applying this scheme to the 6 image sets gives
the estimation results listed in Table 7. Compared with the
true ones, results in Table 7 seem biased towards smaller
estimations. This may be due to large variations among dif-
ferent object instances that exist in these practical data. As
a result, some of the corresponded inlier features across an
image set become less correlated, and thus more like out-
liers. Nevertheless, Table 7 and Fig. 5 suggest that in these
practical problems, we can still use the estimated numbers of
inliers (as inputs of Algorithm 1) to establish certain numbers
of accurate feature matchings, as demonstrated by the Match
Ratio results in Fig. 5.
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Fig. 5 Match Ratio a and Identification Ratio b of ROML on 6 image
sets of different object categories, obtained by providing different values
of n (the assumed number of inliers for each image set) to Algorithm
1. The mark on each curve corresponds to the true number of inliers

Table 7 Estimation of inlier numbers on 6 image sets of different object
categories, using the proposed scheme (25)

Ground truth inlier number Estimated inlier number

Airplanes 12 9

Face 19 11

Motorbike 15 13

Car 13 10

Bus 12 5

BoA 16 11

In the above experiments, we evaluate ROML’s perfor-
mance by comparing the ground truth inlier features and their
correspondences with those identified by ROML, e.g., the
measure of Match Ratio. In practice, the ground truth infor-
mation onwhich features are inliers is unavailable for a given
image set. It is particularly interesting to detect the true inliers
out of those features identified by ROML, so as to make
ROMLmore useful for practical problems such as 3D recon-
struction and object recognition. We have developed such a
scheme (26) in Sect. 3.2.5. Applying our proposed scheme to
the 6 image sets used in this section gives the results listed in
Table 8, where performance of the scheme (26) is measured
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Table 8 Detection of true inliers on 6 image sets of different object
categories, using the proposed scheme (26)

Ratios of miss. inliers 5 % 10 % 30 % 50 %

Airplanes 1.00/0.81 1.00/0.76 0.84/0.72 0.69/0.63

Face 0.91/0.77 0.92/0.81 0.84/0.75 0.73/0.69

Motorbike 1.00/0.93 0.95/0.87 0.81/0.78 0.62/0.70

Car 0.94/0.78 0.93/0.77 0.80/0.67 0.62/0.60

Bus 0.94/0.62 0.97/0.63 0.83/0.63 0.64/0.48

BoA 1.00/0.73 0.90/0.60 0.63/0.42 0.53/0.39

For each image set, different portions of randomly chosen ground truth
inliers are replaced with outliers, to simulate the scenarios of missing
inliers. Results are presented in the format of Precision/Recall

Table 9 Match Ratios of ROML on 6 image sets of different object
categories

Ratios of missing inliers 5% 10% 30% 50%

Airplanes 95% 94% 74% 69%

Face 80% 84% 77% 72%

Motorbike 98% 93% 84% 69%

Car 82% 79% 71% 57%

Bus 68% 72% 66% 55%

BoA 76% 59% 38% 30%

For each image set, different portions of randomly chosen ground truth
inliers are replaced with outliers, to simulate the scenarios of missing
inliers

by precision and recall scores (defined in Sect. 3.2.5). These
results were obtained by randomly replacing different por-
tions of ground truth inliers with outliers for each image set,
to simulate the scenarios of missing inliers. Table 8 shows
that precision scores are generally high when not many true
inliers are missing, and the corresponding recall scores are
satisfactory to give enough numbers of true inliers for practi-
cal use. Corresponding Match Ratio results for experiments
reported inTable 8 are also presented inTable 9,whereMatch
Ratio is computed based on non-missing inliers. Table 9 sug-
gests that ROML is less influenced when only a small portion
of ground truth inliers are missing.

5.3 Non-rigid Object Moving in a Video Sequence

Lastly, we test how ROML performs to match a non-rigid
object moving in a video sequence. This could be a much
harder application scenario than that in Sect. 5.2. For exam-
ple, in a video sequence with static background, some salient
points in the background consistently appear across the
video frames, with little change of appearance, and they
can form their own “low-rank pattern”. The corresponding
salient points (inliers) on the non-rigid foreground of inter-
est may only appear in some of the frames, possibly with
changing appearance. In this section, we used a 25-frame

Fig. 6 Illustration of the failure of ROML on matching a non-rigid
object moving in a video sequence. Most of the identified correspon-
dences by ROML are from the background (blue lines), rather than from
the foreground object of interest (red lines) (Color figure online)

“Tennis” sequence and a 50-frame “Marple” sequence (Brox
and Malik 2010) to test how ROML performs in this chal-
lenging scenario. For the first sequence, we used KLT tracker
(Lucas andKanade 1981) to detect 100 interest points in each
frame. For the second one, we detected 150 interest points
in each frame. We again used the type of learned embedded
features as explained in Sect. 4.3. The parameter settings
were the same as those used in Sect. 5.2. Figure 6 illustrates
the matching results of ROML among 4 frames of these two
sequences respectively. Clearly, most of the identified cor-
respondences by ROML are from the background, showing
the failure when applying ROML to this challenging sce-
nario. In fact, comparative graph and hyper-graph matching
methods all failed on these two sequences. This difficulty of
mining/matching foreground objects from video sequences
with static background poses a common challenge for these
feature-based object matching methods.

The above challenge can be largely alleviated when inliers
from the foreground object can be specified in the first frame
of a video sequence. This resembles an object tracking sce-
nario. In the following, we report experiments that show how
ROML performs in this alleviated non-rigid object match-
ing scenario. More specifically, given a video sequence with
interest points detected in each of the total K frames, we
label inlier points from those detected in the first frame. The
task is to match these inlier points, which are supposed to
be on the object of interest, across the subsequent K − 1
video frames, simulating a tracking scenario. We again used
the “Tennis” and “Marple” sequences. We labelled 11 inliers
from the 100 detected interest points in the first frame of
the “Tennis” sequence, and 14 inliers from the 150 detected
interest points in the first frame of the “Marple” sequence.
To adapt our method to this scenario, we simply fix P1 in
steps 5–7 of Algorithm 1 so that it selects the n inliers
labelled in the first frame, while optimizing the other K − 1
PPMs {Pk}Kk=2.

8 We compare ROML with a baseline KLT
tracker, and recent graph and hyper-graph matching meth-

8 To make this scheme effective, we emphasize the labelled first frame
by normalizing feature vectors of its interest points to have a larger value
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Fig. 7 Example correspondences of interest points among 4 frames of
the “Tennis” and “Marple” sequences (Brox and Malik 2010) respec-
tively. For every pair top is from DD (Torresani et al. 2008), and bottom
is from our method. Red lines represent identified ground truth cor-
respondences, and blue lines are for false ones (Color figure online)

ods (Torresani et al. 2008; Cho et al. 2010; Leordeanu and
Hebert 2005; Duchenne et al. 2011; Lee et al. 2011; Zass
and Shashua 2008). Since inlier points in the first frame are
labelled ground truth, for graph and hyper-graph matching
methods, we generated 24 and 49 frame pairs for the “Ten-
nis” and “Marple” sequences respectively, i.e., between the
first frame and each of the other frames, and used them for
pair-wisematching. The other settings of thesemethodswere
the same as those used to produce Table 5 in Sect. 5.2. Para-
meters of these methods were also tuned to their respective
best results on the two sequences. Table 10 reports the quan-
titative results of different methods in terms of Match Ratio.
Example correspondences of interest points for DD (Torre-
sani et al. 2008) and ourmethod are also shown in Fig. 7. KLT
tracker generally fails since there are abrupt motion and/or
occlusion of inlier points in these two sequences. Compared
to graph/hyper-graph matching methods, our method gives
better results, which confirms the effectiveness of ROML for
simultaneousmulti-image objectmatching.We also compare
with our previousmethod (Zeng et al. 2012) in Table 10. Con-

Footnote 8 continued
of �2-norm, compared to those in the other K − 1 frames. This trick
is important since when applying ROML to a video sequence with
static background, it is possible that some of the interest points in the
background are selected to form a “low-rank pattern”, while those of the
true pattern labelled in the first frame are treated as outliers. Theoretical
correctness of this scheme is pending for proof. In practice, we observed
that it worked well, and we defer the proof of this scheme in future
research.

123



192 Int J Comput Vis (2016) 117:173–197

sistent to those results in Sect. 5.2, ROML again improves
over Prev (Zeng et al. 2012) on these two sequences.

6 Common Object Localization

Learning models of object categories typically requires man-
ually labelling a large amount of training images (e.g., up to
a bounding box of the object of interest), which however,
are expensive to obtain and may also suffer from unin-
tended biases by annotators. A recently emerging research
topic (Tuytelaars et al. 2010) considers automatically dis-
covering and learning object models from a collection of
unlabelled images. Given an image collection containing
object instances belonging to unknown categories, the task is
to identify the categories, localize object instances in images,
and learn models for them so that the learned models can
be applied to novel images for object detection. This is a
weakly supervised (or unsupervised) learning scenario when
the image collection is known to contain object instances of
a single category (or multiple categories), which is in gen-
eral ill-posed. A critical component for success of learning
is precise object localization inside each image. However,
precise common object localization (COL) is extremely dif-
ficult given unknownobject categories/models, and also large
intra-category variations and cluttered background.

Many methods have been proposed for this challenging
task in either weakly supervised or unsupervised settings
(Kim et al. 2008; Lee and Grauman 2009; Liu and Chen
2007; Russell et al. 2006). Among them the methods (Lee
and Grauman 2009; Kim et al. 2008; Liu and Chen 2007)
explicitly take object (or its associated parts/features) local-
ization into account. These methods normally require the
objects of interest covering a large portion of the images.
More recently, saliency guided object learning techniques
(Zhu et al. 2012; Deselaers et al. 2012) are proposed, which
exploit generic knowledge of “objectness” (Alexe et al. 2010;
Endres and Hoiem 2010; Feng et al. 2011) obtained from
low-level image cues and/or learning from other irrelevant
annotated images. Consequently, they can potentially locate
object instances with large scale/appearance variations in
cluttered background.

In this section, we present experiments to show how
ROML can be applied to this COL task using local region
descriptors as features. Similar to Deselaers et al. (2012),
we also sample candidate bounding boxes from each image
based on their objectness scores, and use appropriate region
descriptors to characterize the appearance inside each bound-
ing box. We then optimize (5) to select a bounding box
from each image, i.e., n = 1 for the PPMs to be optimized.
Ideally the selected bounding boxes should localize object
instances deemed common in the given image collection,
i.e., the matrix L in (5) is rank deficient. We used the PAS-

CAL datasets (Everingham et al. 2006, 2007) for the COL
experiments in bothweakly supervised and unsupervised set-
tings. For the weakly supervised case, we followed the same
settings as in Deselaers et al. (2012). In particular, we used
a subset of the PASCAL06 (Everingham et al. 2006) train
+ val dataset containing all images of 6 classes (bicycle,
car, cow, horse, motorbike, sheep) from the left and right
viewpoints. We conducted COL on all images of each class-
viewpoint combination, which are assumed to contain object
instances of the same class at a similar viewpoint. To make
the problem better defined, we followed (Deselaers et al.
2012) and removed images in which all objects are marked
as difficult or truncated in the ground truth annotation. The
PASCAL07 dataset (Everingham et al. 2007) is more chal-
lenging as objects vary greatly in appearance, scale, and
location. We also used 6 classes (aeroplane, bicycle, boat,
bus, horse, and motorbike) of the PASCAL07 train + val
dataset from the left and right viewpoints. The other settings
were the same as for the PASCAL06 dataset. These classes of
PASCAL06 and PASCAL07 datasets were chosen because
they are the object classes on which fully supervised meth-
ods can perform reasonably well. For every image in one
class-viewpoint combination, we used (Alexe et al. 2010) to
sample 100 bounding boxes proportionally to their probabil-
ity of containing an object (the objectness score). To describe
the region appearance inside each bounding box, we used the
GIST descriptor with the default parameters as in Oliva and
Torralba (2001), which gives a 512-dimensional feature vec-
tor. As suggested in Deselaers et al. (2012), the shape and
objectness score of a bounding box provide additional infor-
mation that may help for COL. Let f be the GIST descriptor
vector for a bounding box. To use shape and objectness score,
we first augmented f with the aspect ratio (width/height) r
of the bounding box, and then added perturbation noise n ∈
R
513 whose entrieswere drawn fromnormal distributionwith

standard deviation set as one minus objectness score of the
bounding box.We used the thus produced vector [f� κr r ]�+
κnn as the feature for each sampled bounding box, where κr
and κn are weighting parameters. We set κr = 0.08 and
κn = 0.015 for all the experiments reported in this section.

We measure COL performance by the percentage of cor-
rectly localized images out of all images in a class-viewpoint
combination, where localization correctness in an image is
based on PASCAL criteria, i.e., intersection of a bound-
ing box with ground truth is more than half of their union.
We compare with several baseline weakly supervised object
localization and learning methods including MultiSeg (Rus-
sell et al. 2006) and Exemplar (Chum and Zisserman 2007),
and also with WSL-GK (Deselaers et al. 2012), which is
saliency guided and performs EM-like alternation of local-
izing objects and learning the object class model. In the
preparation of this paper, we notice that a more recent work
(Siva et al. 2013) gives better COL performance by using
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Table 11 COL accuracies of different methods on the PASCAL06 and PASCAL07 datasets

Objectness (Alexe
et al. 2010) (%)

MultiSeg (Russell
et al. 2006) (%)

Exemp. (Chum and
Zisserman 2007) (%)

WSL-GK (Deselaers
et al. 2012) (no
learning) (%)

ROML (%) WSL-GK (Deselaers
et al. 2012) (with
learning) (%)

PASCAL06 51 28 45 55 64 64

PASCAL07 28 22 33 37 36 50

For objectness (Alexe et al. 2010), sampled bounding box with the highest score in each image is considered as the estimated localization
Best results are highlighted in bold

Table 12 COL accuracies of ROML for different class-viewpoint combinations of the PASCAL06 and PASCAL07 datasets in both weakly
supervised and unsupervised settings

PASCAL06 PASCAL07

Bicycle (%) Car (%) Cow (%) Sheep (%) Aeroplane (%) Bus (%) Horse (%) Motorbike (%)

Weakly supervised—left 84 79 60 58 26 24 40 56

Unsupervised—left 80 79 60 52 30 29 35 56

Weakly supervised—right 69 70 66 52 38 61 35 65

Unsupervised—right 67 63 57 40 28 48 41 56

more advanced saliency estimation method. Since this sec-
tion is mainly to show the usefulness of ROML for the COL
task, we will not pursue adopting this new saliency method
to further improve our results.

Table 11 reports COL accuracies of different methods on
the PASCAL06 and PASCAL07 datasets, which are obtained
by averaging over all class-viewpoint combinations. Results
of MultiSeg (Russell et al. 2006) and Exemplar (Chum
and Zisserman 2007) in Table 11 are from Deselaers et al.
(2012). Table 11 suggests that Objectness (Alexe et al. 2010)
gives very good initial candidates of object bounding boxes.
Consequently, results of both our method and WSL-GK
(Deselaers et al. 2012) on the PASCAL06 and PASCAL07
datasets compare favorably with those from MultiSeg (Rus-
sell et al. 2006) and Exemplar (Chum and Zisserman 2007).
For the PASCAL07 dataset, our method is comparable to
WSL-GK (Deselaers et al. 2012) when no iterative steps
of class learning are performed in Deselaers et al. (2012),
and greatly outperforms (Deselaers et al. 2012) for the PAS-
CAL06 dataset, for which our result in fact approaches final
result of Deselaers et al. (2012), which is obtained after full
steps of class learning and using richer feature representa-
tion including GIST, color information, and HOG for object
shapes. Since the present paper is focusing on object match-
ing and localization, we defer extension of our method for
object class learning as future research.

We also conducted COL experiments in the unsupervised
setting using 4 classes from the PASCAL06 (bicycle, car,
cow, and sheep) and PASCAL07 (aeroplane, bus, horse, and
motorbike) datasets respectively. Other data setups were the
same as those in the above weakly supervised COL experi-
ments. For either of the PASCAL06 andPASCAL07datasets,
we put all images of different classes from one viewpoint as

an image collection, and applied ROML for object local-
ization. Performance was again measured by the percentage
of correctly localized images out of all images in a class-
viewpoint combination. Table 12 reports detailed results of
different class-viewpoint combinations, where we also list
results of ROML in the weakly supervised setting. Table 12
tells that ROML performs consistently well in both weakly
supervised and unsupervised object localization. Example
images of these classes with localized bounding boxes are
shown in Fig. 8, where we also show the bounding boxes
with the highest objectness score in each image and those of
ROML in weakly supervised setting for comparison.

7 Conclusions

In this paper, we propose a framework termed ROML, for
robustly matching objects in a set of images. ROML is for-
mulated as a rank and sparsity minimization problem to
optimize a set of PPMs. The optimized PPMs identify inlier
features from each image and establish their consistent cor-
respondences across the image set. To solve ROML, we use
the ADMMmethod, in which a subproblem associated with
PPM updating is a difficult IQP. We prove that under widely
applicable conditions, this IQP is equivalent to a formulation
of LSAP, which can be efficiently solved by the Hungarian
algorithm. Extensive experiments on rigid/non-rigid object
matching, matching instances of a common object category,
and common object localization show the efficacy of our pro-
posed method.

In the present work, we have assumed for ROML that
there is exactly one object instance contained in each of a
set of images. This assumption is mainly to make an ideal
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Bicycle Car Cow Sheep Aeroplane Bus Horse Motorbike

Fig. 8 Example images with estimated bounding boxes of different
class-viewpoint combinations from the PASCAL06 and PASCAL07
datasets. In each image, results of Objectness (Alexe et al. 2010) with
the highest objectness score (green box), and ROML in unsupervised

(blue box) and weakly supervised (red box) settings are shown (they
may coincide in some images where only one or two boxes are shown).
Top part is for left viewpoint, and bottom part is for right viewpoint
(Color figure online)

problem setting for the difficult, combinatorial task of simul-
taneously matching inlier features of object instances across
a set of images. However, in many practical problems such
as unsupervised learning of object categories from an image
collection, there could be multiple object instances, possibly
of different categories, contained in one image. In thesemore
challenging scenarios, ROML, by design, may at most iden-
tify and match one instance from each image, and ignore the
other instances contained in the image collection. In order to
learn object categories in these more challenging scenarios,
one may need to extend the formulation of ROML so that
multiple instances per image can be taken into account. For
example, we havemade an attempt of such kind in Zeng et al.
(2013) for the task of learning object (face) categories from
ambiguously labeled images, where each image in an image
collection may contain multiple object instances of interest,
and its associated caption has some labels of object category,
with the true ones included, while the instance-label associa-
tion is unknown. We take into account multiple instances per
image in Zeng et al. (2013) by extending ROML to accom-
modate category-wise low-rank models and new constraints
of PPMs. Nevertheless, extending ROML to unsupervised
object learning remains an open question, and we are inter-
ested in pursuing this direction in future research.

Results of practical running time reported in Tables 1
and 6 suggest that it would be prohibitively slow to apply
ROML (via Algorithm 1) to large-scale feature matching
problems. Since most of the computation of Algorithm 1
is spent on solving matrix SVD (step 2) and K independent
LSAPs (steps 5–7), one may revise Algorithm 1 accordingly,
e.g., by using more efficient or approximate SVD solvers, to
address the issue of scalability. Approximate SVD can be
efficiently implemented using power method (Halko et al.
2011), which is based on a few iterations of QR factorization
on a much reduced matrix. Using Hungarian algorithm to
solve LSAP is already very efficient. To reduce the computa-
tion of steps 5–7, one may customize a stochastic version of
ADMM algorithm for the proposed ROML formulation, and
choose either approximate SVD or incremental SVD to alle-
viate the heavy computation of matrix SVD involved in each
iteration of stochastic ADMM. While the per-iteration com-
putation of stochastic ADMM becomes light, a remaining
issue to be addressed is that the convergence rate of stochas-
ticADMMmaynot be comparablewith its batch version, and
consequently one may not necessarily get an improved over-
all efficiency by using stochastic ADMM to solve ROML.
Alternatively, one may follow the low-rank matrix factoriza-
tion based online RPCA algorithm (Feng et al. 2013), and
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develop a corresponding online algorithm to solve ROML
efficiently. By doing so onemay need to address an additional
issue of convergence, due to the discrete, non-convex prob-
lem nature of ROML. In future research, we are interested
in pursuing these directions to develop new algorithms and
applying ROML to large-scale feature matching problems.
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Appendix 1: Learning Features of Coordinates-
Descriptor Combination

Local region descriptors alone could be ambiguous for fea-
ture matching when there exist repetitive textures or less
discriminative local appearance in images. To improve the
matching accuracy, it is necessary to exploit the geometric
structure of inlier points that consistently appears in each
of the set of images. In this work, we consider a simple
method introduced in Torki and Elgammal (2010) to exploit
such geometric constraints. The method derives an embed-
ded feature representation that combines information of both
spatial arrangement of feature points inside each image, and
similarity of feature descriptors across images. We briefly
summarize this method as follows.

Given a set of K images, denote Ak
spa. ∈ R

nk×nk as an
affinity matrix that measures the spatial proximity of any
two of the nk extracted feature points in the kth image, where
spatial proximity can be either measured based on Euclidean
distances of image coordinates of feature points, which is
invariant to translation and rotation, or made affine invariant
(Torki and Elgammal 2010). In this work, we compute Ak

spa.

using Gaussian kernel as Ak
spa.(i, j) = e−‖xki −xkj‖2/2σ 2

spa. ,
where xk = [xk, yk]� denotes image coordinates in the kth
image, and σspa. is a scaling parameter. Each feature point
has an associated region descriptor. Denote Apq

des. ∈ R
n p×nq

as another affinity matrix, each entry of which measures
the similarity of region descriptors between a pair of fea-
tures selected from the pth and qth images respectively.
Apq
des. can be computed similar to Ak

spa. as Apq
des.(i, j) =

e−‖f pi −fqj ‖2/2σ 2
des. , where f pi and fqj are feature descriptors

from the pth and qth images respectively, and σdes. is a scal-
ing parameter.

The method in Torki and Elgammal (2010) aims to learn
embedded feature representations for all N = ∑K

k=1 nk
points in the K images so that in the embedded space:
(1) spatial structure of the point set in each image should
be preserved; (2) features from different images with high
descriptor similarity should be close to each other. Let {fki ∈

R
d}nki=1, k = 1, . . . , K , be the new features to be learned,9

the above objectives can be formalized as

min
∑

p,q

∑

i, j

∥
∥f pi − fqj

∥
∥2
2A

pq
i j , (28)

where the matrix A ∈ R
N×N is defined as: Apq = Ak

spa.

when p = q = k, Apq = Apq
des. when p �= q, and

Apq ∈ R
n p×nq is the (p, q) block of all the K × K

blocks of A. The objective function (28) turns to be a prob-
lem of Laplacian embedding (Belkin and Niyogi 2003). Let
F̃ = [f11 , . . . , f1n1 , . . . , f

K
1 , . . . , fKnK ]� ∈ R

N×d , (28) can be
rewritten in matrix form as

min
F̃

trace
(

F̃�L̃AF̃
)

s.t. F̃�D̃AF̃ = I, (29)

where L̃A = D̃A − A is the Laplacian matrix of A, and D̃A

is a diagonal matrix with value of the i th diagonal entry as
∑

j Ai j . (29) is a generalized eigenvector problem: L̃Af =
βD̃Af . Its optimal solution, i.e., the N new features in the d-
dimensional embedded space, can be obtained by the bottom
d nonzero eigenvectors.

Appendix 2

We present derivations of the solutions (11) and (12) respec-
tively for the problems (7) and (8) as follows.

Given updated variables Et , {Pk
t }Kk=1, and Yt , and write

Dt = [vec(F1P1
t ), . . . , vec(F

KPK
t )], the problem (7) can be

written explicitly as

min
L

‖L‖∗ + ρ

2
‖L − (Dt − Et − 1

ρ
Yt )‖2F , (30)

which appears to be the form of a proximal operator associ-
ated with the nuclear norm. According to Lin et al. (2010),
optimal solution of (30) can be written as (11).

Given updated variablesLt+1,Yt , and {Pk
t }Kk=1 withDt =

[vec(F1P1
t ), . . . , vec(F

KPK
t )], the problem (8) can be writ-

ten explicitly as

min
E

λ‖E‖1 + ρ

2
‖E − (Dt − Lt+1 − 1

ρ
Yt )‖2F , (31)

which appears to be the form of a proximal operator associ-
atedwith the �1-norm.According to Lin et al. (2010), optimal
solution of (31) can be written as (12).

9 For consistency we use the same f for different feature types.
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