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PROBLEM DEFINITION

Source domain § = {(xj-: }7; )}?ll
Target domain T = {x:}:il
Feature embedding function ¢(+; @) : X — Z lifts any x € X to the feature space Z,ie. Z = go(x ).
Classifier £ (+9):Z — R" with softmax at the top outputs a probability vector p = softmax (f(2)).

A shared label space Y yj,yr € {132,...,K}.

» Objective: Given labeled data on S, UDA is to predict class labels for unlabeled
data sampled from T by learning @(-) and /(-)on both {(*},¥})}7 and {x;}7, .

* Transductive UDA is to measure performance of the learmed @(-) and () on {x: b
* Inductive UDA is to evaluate on held-out instances sampled from the same T.

* This subtle difference is in fact important since off-the-shelf models are expected.
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OUR UNCOVERING STRATEGY

» Assumption of structural domain similarity (a):

Domain-wise

Structural

- . - - - - - f/
Sllnllarlty discrimination _
between S _
Class-wise
dT — |
dall closeness A

» Existing transferring strategy of learning
aligned features across domains (b) ——

a sub-optimal generalization.

(a) (b) (c)
Source Target Class 1 Class 2
Oracle source classifier Oracle target classifier
Source classifier adapting to damaged target discrimination
l( - Source classifier adapting to intrinsic target discrimination Y,

» Based on the assumption, our strategy of uncovering intrinsic discrimination of target data (c)—

an adapted classifier closer to oracle target classifier.
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OUR UNCOVERING STRATEGY

= Motivation: Mainstream UDA methods take the transferring strategy,
which has a potential risk of damaging the intrinsic discrimination of

target data, as discussed 1n [2, 3, 4].

= Solution: We directly uncover the intrinsic target discrimination via
discriminative clustering of target data and constrain the clustering
solutions using structural source regularization that hinges on our

assumed structural domain similarity.

[2] Xinvang Chen, Sinan Wang, Mingsheng Long, et al. Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation. ICMIL2019.
[3] Yuan Shi and Fei Sha. Information-theoretical learning of discriminative clusters for unsupervised domain adaptation. ICML2012. @
[4] Han Zhao, Remi Tachet Des Combes, Kun Zhang, et al. On learning invariant representations for domain adaptation. ICML2019.



OUR UNCOVERING STRATEGY

» Structurally Regularized Deep Clustering (SRDC) implicitly achieves feature alignment

between the two domains.
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Figure 1. (Best viewed in color). Pipeline of our proposed method. The colors of orange and green denote different domains. The shapes
of triangle, rectangle, and pentagon denote different classes. Based on the assumed structural similarity across domains, our losses of L'}u.;
and L, uncover the intrinsic discrimination of unlabeled target data and those of L7, and L, transfer the global, discriminative structure

of labeled source data via joint training. An example of the effect of our proposed method is shown in the circle. @




OUR UNCOVERING STRATEGY

= Deep discriminative target clustering [5] minimizes the KL divergence between predictive

label distribution of the network and an introduced auxiliary one:

We collectively write

K
Qtn?}inﬂ} £}Dp = KL(Q'||P") + Z oplogol, (1) is the introduced auxiliary counterpart.
o k=1

is the predicted target label distribution.

* Optimization takes alternating steps:

Auxiliary distribution update i Network update
t Ty t 3 ng K
t P/ (o ph ) | ‘ g E
Gk = =k — T (2) _. min —— q; . log p; 4. (3)
Zkr::l pfhkr/(ztr:]_ pgr,kr) 2 - B,'ﬂ g ; ; .

= We also enhance target discrimination with deep embedding clustering in the feature space [6]:

ﬂt exp((L + |[2f — pell®) 1) K
Pig = : (4) i Ct = KL(Q'|| P 5t log 5t 5
T e exp((1+ ||zt — | 2)Y) o o (uty ¢ (Q'[|P7) + 3219;: 0g ok, (5

where #;.1s the learnable cluster center and ﬁr « 18 a probability vector of soft cluster assignment.

[5] K. G. Dizaji, A. Herandi, C. Deng, et al. Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. ICCV2017. @
[6] Junyuan Xie, Ross Girshick, Ali Farhadi. Unsupervised deep embedding for clustering analysis. ICML2016.



OUR UNCOVERING STRATEGY

= Structural source regularization: Replacing the auxiliary distribution with that formed by
ground-truth labels of source data implements the structural source regularization via a simple

strategy of joint network training:

min_ L7 = ——ZZI[R =yillogp5e,  (8)

Hr{“‘k}k 1 J—lk—
K
Iglu.«fl}lﬁf“* - _n_ ZZI k= y;] 19%19; ks (7) where
SJLL]. o 1+ o -
5, = p((1+||z§ — p&l]*) ) ©)

K
> k=1 €Xp((1 + [|2§ — pr[[2) 1

= We also enhance structural regularization with soft selection of less divergent source examples:

1 CET'ES 1 e K
| y - . s oS 3
wi@) =51+ T ) 0,1. (12 Fop(i{ws}m }——n—‘g;tbjkzzl[ﬁ—yj]logpjk (13)
: J= =1
where {c.}~_, are the K target cluster centers 1 -
. {€c S g L fwerme ) = = ¢§ZI[L_yj]lgngk (14)
in the feature space. e({widi2y) ng 4
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OUR UNCOVERING STRATEGY

T . . 1 . Algorithm 1 Training algorithm for SRDC, E denotes the
. I'EllIllIlg d gOI'lthIIl training epoch, I denotes the training iteration, B; and B,
denote the mini-batches.
Input: unlabeled target samples 7 = {x!},: labeled
source samples S = { (x5, v5) };2,
Output: 6,9, {pp}f,
1 Initialize: @,9, {pi}i . ¢!, = @', = 1[k = !] for
i€ {l,2,....n¢s}and k € {1,2,... K}, wj =1 for
7e{1,2,..., n.p, E=1

2: while not converge do

3: for/ < 1, MAX_ITER do

4: Sample B; and B, from T and &

5: if E = | then

6: Compute ¢!, and ¢!}, by using (2)

T: end if

8: Update 8,9, {px}5_, by minimizing (11) on
B; and B,

9: end for

10: Compute {c} } 2| by standard K -means clustering

11: Compute w§ = 1,5 € {1,2,...,n.} by using (12)

12: Initialize: {pp i,

13: E=E+1
14: end while @




EXPERIMENTS

= Ablation study:

Method A=W A—=D D —A W—=A | Avg

Source Model 77.8£0.2 | 82.1+0.2 | 64.5£0.2 | 66.1£0.2 | 72.6

SRDC (w/o structural source regularization) | 87.3£0.0 | 92.1£0.1 | 73.9£0.1 | 75.0=0.1 | 82.1 Each component
SRDC (w/o feature discrimination) 042404 | 94304 | 74302 | 75.5£04 | 84.6 . :
SRDC (w/o soft source sample selection) 04.8+0.2 | 94.6+0.3 | 74.620.3 | 75.7£0.3 | 84.9 Is important:
SRDC 95.7£0.2 | 95.8+0.2 | 76.7£0.3 | 77.1£0.1 | 86.3

= Convergence performance

0.50- Source Model (& -+ 'n'u':l.
0.45 z:&iru::illw - &)
040 | SRDC (W = A]
= Comparative experiments under
p p Esz: o Better and more stable!
inductive UDA setting: Soml | )
0.15
Method A=W | A—=D |D—-A | W—=A| Avg 0.10-
Source Model | 793 | 816 | 63.1 | 657 | 724 o -
DANN 808 | 824 | 660 | 646 |735 T s m B W B B0 15 2
MCD 865 | 867 | 724 | 709 |79.1 Figure 5. Convergence.
SRDC 919 | 91.6 | 756 | 757 | 837 | N R e .
Oracle Model | 03.8 576 1 873 78 1930 Much closer to Oracle Model! Stronger generalization ability! @



= Source refinement

From canonical viewpoint
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Figure 2. The images on the left are randomly sampled from the
target domain A and those on the right are the top-ranked (the 3"¢
column) and bottom-ranked (the 4" column) samples from the
source domain W for three classes. Note that the red numbers are
the source weights computed by (12).

From canonical, top-
down, bottom-up, and
side viewpoints
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EXPERIMENTS

= Visualization by t-SNE and confusion matrix
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(a) Source Model: A=W (b) SRDC: A—=W (c) Source Model: W—A (d) SRDC: W—=A
Figure 3. The t-SNE visualization of embedded features on the target domain. Note that different classes are denoted by different colors.
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(c) Source Model: W—A

(b) SRDC: A—=W (d) SRDC: W—A

(a) Source Model: A—W
Figure 4. The confusion matrix on the target domain. (Zoom in to see the exact class names!)

Significant
improvement!



EXPERIMENTS

= Comparison with SOTA

Method A—-W D—-W WD A—-D D— A WA | Avg

Source Model [21] | 77.8+£0.2 | 96.9+0.1 00.34+0.1 82.1+£0.2 | 64.540.2 | 66.1£0.2 | 81.1

MDD [66] 045403 | 98.4+0.1 | 100.0£0.0 | 93.5+£0.2 | 746403 | 72.2+0.1 | B89

CAN [27] 045403 | 99.1£0.2 | 99.840.2 | 95.0+£0.3 | 78.0+0.3 | 77.0£0.3 | 90.6 O £ SOTA!
SRDC 95702 | 99.2+0.1 | 100.0£0.0 | 95.8+0.2 | 76.7£0.3 | 77.1=0.1 | 90.8 — Outperiorm -

Table 3. Results (%) on Office-31 (ResNet-50).

Methods [—-P P—1 [ - C C—1 C—P P—C Avg

Source Model [21] | 74.8+£0.3 | 83.9+0.1 | 91.5+0.3 | 78.0+£0.2 | 65.5+0.3 | 91.2+0.3 | 80.7

SAFN+ENT [60] 79.3+£0.1 | 933404 | 963404 | 91.7£0.0 | 77.6£0.1 | 95.3£0.1 | 88.9

SymNets [68] 80.2+0.3 | 93.620.2 | 97.04+£0.3 | 93.4+0.3 | 78.7+0.3 | 96.4+0.1 | 89.9

SRDC 80.8+0.3 | 94.7+0.2 | 97.8+£0.2 | 94.1+0.2 | 80.0+0.3 | 97.7+0.1 | 90.9

Table 4. Results (%) on ImageCLEF-DA (ResNet-30).
| Methods | Ar—Cl | Ar—Pr | Ar—Rw | Cl—+Ar | Cl—Pr | Cl=Rw | Pr—Ar | Pr—Cl | Pr—Rw | Rw—Ar | Rw—Cl | Rw—Pr | Avg |

Source Model [21] | 349 50.0 58.0 374 41.9 46.2 385 31.2 6.4 539 41.2 59.9 46.1

SymNets |68] 47.7 128 18.5 64.2 71.3 74.2 64.2 48.8 79.5 14.5 326 827 67.6

MDD |66 549 73.7 T1.8 60.0 71.4 71.8 61.2 336 78.1 125 6.2 823 68.1

SRDC 523 76.3 SL.0 9.5 76.2 T8.0 68,7 338 51.7 76.3 571 830 71.3

Table 5. Results (%) on Office-Home (ResNet-30).




FUTURE DIRECTIONS

= To investigate more etfective clustering methods for target
discrimination.

= To discover more helpful manners to enforce structural
source regularization.

= To explore novel UDA paradigms with theoretical gurdance,
which can preserve the intrinsic target discrimination as
much as possible.
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