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Abstract. Fine-grained visual categorization (FGVC) is challenging due
in part to the fact that it is often difficult to acquire an enough number
of training samples. To employ large models for FGVC without suffer-
ing from overfitting, existing methods usually adopt a strategy of pre-
training the models using a rich set of auxiliary data, followed by fine-
tuning on the target FGVC task. However, the objective of pre-training
does not take the target task into account, and consequently such ob-
tained models are suboptimal for fine-tuning. To address this issue, we
propose in this paper a new deep FGVC model termed MetaFGNet.
Training of MetaFGNet is based on a novel regularized meta-learning
objective, which aims to guide the learning of network parameters so
that they are optimal for adapting to the target FGVC task. Based on
MetaFGNet, we also propose a simple yet effective scheme for selecting
more useful samples from the auxiliary data. Experiments on benchmark
FGVC datasets show the efficacy of our proposed method.

Keywords: Fine-grained visual categorization ·Meta-learning · Sample
selection

1 Introduction

Fine-grained visual categorization (FGVC) aims to classify images of subordi-
nate object categories that belong to a same entry-level category, e.g., different
species of birds [27, 26, 3] or dogs [9]. The visual distinction between different
subordinate categories is often subtle and regional, and such nuance is further
obscured by variations caused by arbitrary poses, viewpoint change, and/or oc-
clusion. Subordinate categories are leaf nodes of a taxonomic tree, whose samples
are often difficult to collect. Annotating such samples also requires professional
expertise, resulting in very few training samples per category in existing FGVC
datasets [26, 9]. FGVC thus bears problem characteristics of few-shot learning.

Most of existing FGVC methods spend efforts on mining global and/or re-
gional discriminative information from training data themselves. For example,
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state-of-the-art methods learn to identify discriminative parts from images of
fine-grained categories either in a supervised [33, 32] or in a weakly supervised
manner [29, 6, 36, 35, 17, 37]. However, such methods are approaching a funda-
mental limit since only very few training samples are available for each category.
In order to break the limit, possible solutions include identifying auxiliary data
that are more useful for (e.g., more related to) the FGVC task of interest, and
also better leveraging these auxiliary data. These solutions fall in the realm of
domain adaptation or transfer learning [15].

A standard way of applying transfer learning to FGVC is to fine-tune on the
target dataset a model that has been pre-trained on a rich set of auxiliary data
(e.g., the ImageNet [22]). Such a pre-trained model learns to encode (generic)
semantic knowledge from the auxiliary data, and the combined strategy of pre-
training followed by fine-tuning alleviates the issue of overfitting. However, the
objective of pre-training does not take the target FGVC task of interest into
account, and consequently such obtained models are suboptimal for transfer.

Inspired by recent meta-learning methods [5, 25, 19] for few-shot learning, we
propose in this paper a new deep learning method for fine-grained classification.
Our proposed method is based on a novel regularized meta-learning objective for
training a deep network: the regularizer aims to learn network parameters such
that they can encode generic or semantically related knowledge from auxiliary
data; the meta-learning objective is designed to guide the process of learning,
so that the learned network parameters are optimal for adapting to the target
FGVC task. We term our proposed FGVC method as MetaFGNet for its use
of the meta-learning objective. Figure 1 gives an illustration. Our method can
effectively alleviate the issue of overfitting, as explained in Section 3.

An important issue to achieve good transfer learning is that data in source
and target tasks should share similar feature distributions [15]. If this is not
the case, transfer learning methods usually learn feature mappings to alleviate
this issue. Alternatively, one may directly identify source data/tasks that are
more related to the target one. In this work, we take the later approach and
propose a simple yet very effective scheme to select more useful samples from
the auxiliary data. Our scheme is naturally admitted by MetaFGNet, and only
requires a forward computation through a trained MetaFGNet for each auxiliary
sample, which contrasts with a recent computationally expensive scheme used
in [7]. In this work, we investigate ImageNet [22], a subset of ImageNet and
a subset of L-Bird [11] as the sets of auxiliary data. For the L-Bird subset,
for example, our scheme can successfully remove noisy, semantically irrelevant
images. Experiments on the benchmark FGVC datasets of CUB-200-2011 [26]
and Stanford Dogs [9] show the efficacy of our proposed MetaFGNet with sample
selection of auxiliary data. Our contributions are summarized as follows.

– We propose a new deep learning model, termed MetaFGNet, for fine-grained
classification. Training of MetaFGNet is based on a novel regularized meta-

learning objective, which aims to guide the learning of network parameters
so that they are optimal for adapting to the target FGVC task (cf. Section
3).
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Fig. 1. Illustrations of MetaFGNet with regularized meta-learning objective (solid line)
and the process of sample selection from auxiliary data (dashed line).

– Our proposed MetaFGNet admits a natural scheme to perform sample selec-
tion from auxiliary data. Given a trained MetaFGNet, the proposed scheme
only requires a forward computation through the network to produce a score
for each auxiliary sample (cf. Section 4). Such scores can be used to effectively
select semantically related auxiliary samples (or remove noisy, semantically
irrelevant ones).

– We present intensive comparative studies on different ways of leveraging aux-
iliary data for the target FGVC task. Experiments on the benchmark CUB-
200-2011 [26] and Stanford Dogs [9] datasets also show the efficacy of our
proposed method. In particular, our result on Stanford Dogs is better than
all existing ones with a large margin. Based on a better auxiliary dataset,
our result on CUB-200-2011 is better than those of all existing methods even
when they use ground-truth part annotations (cf. Section 5).

2 Related works

In this section, we briefly review recent fine-grained classification methods, in
particular those aiming for better leveraging auxiliary data, and also meta learn-
ing methods for the related problem of few-shot learning. We present brief sum-
maries of these methods and discuss their relations and differences with our
proposed one.
Fine-grained visual categorization State-of-the-art FGVC methods usually
follow the pipeline that first discovers discriminative local parts from images of
fine-grained categories, and then utilizes the discovered parts for classification.
For example, Lam et al. [13] search for discriminative parts by iteratively eval-
uating and generating bounding box proposals with or without the supervision
of ground-truth part annotations. Based on off-the-shelf object proposals [24],
part detectors are learned in [35] by clustering subregions of object proposals. In
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[6], a hierarchical three-level region attention mechanism is proposed that is able
to attend to discriminative regions, where region discrimination is measured by
classification probability. Multiple part attention maps are generated by cluster-
ing and weighting the spatially-correlated channels of the convolutional feature
maps in [37].

There exist FGVC methods [20, 2, 18, 4, 14, 28] that process a whole image
instead of local parts, yet their results are generally worse than those of part
based methods. Another line of methods push the state of the art by identifying
and leveraging auxiliary data beyond the ImageNet. In particular, the method
of [11] sets an astonishing baseline on CUB-200-2011 simply by pre-training a
standard deep model using a huge auxiliary set of web images that are obtained
by using subordinate categories of bird as search keywords; note that such ob-
tained auxiliary images are quite noisy in terms of their category labels. Xie et

al. [30] propose to augment the fine-grained data with a large number of aux-
iliary images labeled by hyper-classes; these hyper-classes are some attributes
that can be annotated more easily than the fine-grained category labels, so that
a large number of images labeled with attributes can be easily acquired; by joint
training the model for hyper-class classification and FGVC, the performance of
FGVC gets improved. Instead of searching for more semantically relevant auxil-
iary data from the Internet, Ge and Yu [7] propose to refine the ImageNet images
by comparing them with those in the training set of the target FGVC task, using
low-level features (e.g., the Gabor filter responses); such a refined ImageNet is
then used to jointly train a model with training images of the FGVC task.

All the above methods use auxiliary data either to pre-train a model, or to
jointly train a model with training images of the target FGVC task. In contrast,
our proposed MetaFGNet uses a regularized meta-learning objective that can
make full use of the auxiliary data, while at the same time making the obtained
model optimal for a further adaptation to the target FGVC task. We also com-
pare our training objective with that of joint training technically in Section 3
and empirically in Section 5.

Few-shot learning via meta learning Meta learning aims to learn experience
from history and adapt to new tasks with the help of history knowledge. Few-
shot learning is one of its applications. [10] trains a siamese neural network for
the task of verification, which is to identify whether input pairs belong to the
same class; once the verification model is trained, it can be used for few- or
one-shot learning by calculating the similarity between the test image and the
labelled images. [25] realizes few-shot learning with a neural network which is
augmented with external memories; it uses two embeddings to map the images to
feature space and the classification is obtained by measuring the cosine distance
in the feature space; the embedding of the test images can be modified by the
whole support set through a LSTM attention module, which makes the model
utilize the support set more reasonably and effectively. In [19], SGD is replaced
by a meta-LSTM that can learn an update rule for training networks. Finn et

al. [5] propose a meta learning method termed MAML, which trains a meta
model in a multi-task fashion. Different from the problem setting of MAML,
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which learns meta models from a set of training tasks that are independent of
the target task, our proposed MetaFGNet involves directly the target task into
the training objective.

3 The proposed MetaFGNet

For a target FGVC of interest, suppose we have training data T = {(xt
i,y

t
i)}

|T |
i=1,

where each pair of xt
i and yt

i represents an input image and its one-hot vector
representation of class label. We also assume that a set of auxiliary data (e.g.,
the ImageNet) is available that contains images different from (but possibly
semantically related to) the target data T . Denote the auxiliary data as S =

{(xs
i ,y

s
i )}

|S|
i=1. As illustrated in Figure 1, our proposed MetaFGNet is based on a

deep neural network consisting of two parallel classifiers of fully-connected (FC)
layers that share a common base network. The two classifiers are respectively
used for T and S. We correspondingly denote parameters of the two classifiers
as θsc and θtc, and denote those of the base network collectively as θb, which
contains parameters of layer weights and bias. For ease of subsequent notations,
we also denote the parameters of target and source model as θt = (θb, θ

t
c) and

θs = (θb, θ
s
c) respectively.

In machine learning, T is usually sampled i.i.d. from an underlying (un-
known) distribution D. To learn a deep model θt, one may choose an appropriate
loss function L(xt,yt; θt), and minimize the following expected loss over D

min
θt

E(xt,yt)∼D

[

L(xt,yt; θt)
]

. (1)

In practice, however, minimizing the above objective is infeasible since the un-
derlying distribution D is unknown. As an alternative, one chooses to minimize
the following empirical loss to learn θt

min
θt

1

|T |
L
(

T ; θt
)

=
1

|T |

|T |
∑

i=1

L
(

xt
i,y

t
i ; θ

t
)

. (2)

As discussed in Section 1, fine-grained classification bears problem characteristics
of few-shot learning, and its training set T is usually too small to well represent
the underlying distribution D. Thus directly minimizing the empirical loss (2)
causes severe overfitting. In the literature of fine-grained classification, this issue
is usually addressed by pre-training the model θt using an auxiliary set of data
S (e.g., the ImageNet), and then fine-tuning it using T . Note that this strategy
alleviates overfitting in two aspects: (1) pre-training gives the model a good
initialization that has learned (generic) semantic knowledge from S; and (2) fine-
tuning itself reduces overfitting via early stop of training. In other words, one
may understand the strategy of fine-tuning as imposing implicit regularization

on the learning of θt. Alternatively, one may apply explicit regularization to (2),
resulting in the following general form of regularized loss minimization

min
θt

1

|T |
L
(

T ; θt
)

+R(θt). (3)
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The auxiliary set S can be used as an instantiation of the regularizer, giving rise
to the following joint training method

min
θb,θt

c,θ
s
c

1

|T |
L
(

T ; θb, θ
t
c

)

+
1

|S|
R (S; θb, θ

s
c) , (4)

where regularization is only imposed on parameters θb of the base network. By
leveraging S, the joint training method (4) could be advantageous over fine-
tuning since network training has a chance to converge to a more mature, but
not overfitted, solution. Based on a similar deep architecture as in Figure 1, the
joint training method (4) is used in a recent work of fine-grained classification
[7]. The choice of the auxiliary set S also matters in (4). Established knowledge
from the literature of transfer learning [15] suggests that S should ideally have
similar distribution of feature statistics as that of T , suggesting that a refinement
of S could be useful for better regularization.

3.1 A meta-learning objective for MetaFGNet

Inspired by recent meta learning methods [5, 25, 19] that learn a meta model
from a set of training few-shot learning tasks, we propose in this paper a meta-
learning objective for the target fine-grained classification task T . Instead of
using the loss L(T ; θt) directly as in (3), the meta-learning objective is to guide

the optimization of θt so that the obtained θt can fast adapt to the target task
via a second process of fine-tuning. Suppose the fine-tuning process achieves

θt ← θt +△(θt), (5)

where △(θt) denotes the amount of parameter update. The problem nature of
few-shot learning suggests that fine-tuning should be a fast process: a small
number of (stochastic) gradient descent steps may be enough to learn effectively
from T , and taking too many steps may result in overfitting. One-step gradient
descent can be written as

△(θt) = −η
1

|T |
∇θtL(T ; θt), (6)

where η denotes the step size. Based on (6), we write our proposed regularized

meta-learning objective for fine-grained classification as

min
θb,θt

c,θ
s
c

1

|T |
L

(

T ; θt − η
1

|T |
∇θtL(T ; θt)

)

+
1

|S|
R (S; θs) . (7)

Our proposed meta-learning objective can also be explained from the perspective
of reducing effective model capacity, and can thus achieve additional alleviation
of overfitting apart from the effect of the regularizer R(S; θb, θ

s
c), in which the

regularization is achieved by base parameters updating from auxiliary data.
Remarks Both our proposed MetaFGNet and the meta-learning methods [5,
19] contain loss terms of meta-learning, which guide the trained model to be able
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to fast adapt to a target task. We note that our method is for a problem setting
different from those of [5, 19], and consequently is the objective (7): they learn
meta models from a set of training tasks and subsequently use the learned meta
model for a new target task; here training set T of the target task is directly
involved in the main learning objective.

3.2 Training algorithm

Solving the proposed objective (7) via stochastic gradient descent (SGD) involves
computing gradient of a gradient for the first term, which can be derived as

∇θt′

1

|Tj |
L
(

Tj ; θ
t′
)

[

I− η
1

|Ti|

(

∂2L(Ti; θ
t)

∂(θt)2

)]

, (8)

where Ti and Tj denote mini-batches of T , and θt
′

= θt − η 1
|Ti|
∇θtL(Ti; θ

t).

Hessian matrix is involved in (8), computation of which is supported by mod-
ern deep learning libraries [1, 16]. In this work, we adopt the Pytorch [16] to
implement (8), whose empirical computation time is about 0.64s per iteration
(batchsize = 32) when training MetaFGNet on a GeForce GTX 1080 Ti GPU.
Training of MetaFGNet is given in Algorithm 1.

Algorithm 1 Training algorithm for MetaFGNet

Require: T : target train data; S: auxiliary train data
Require: η, α: hyperparameters of step size
1: initialize θb, θ

t
c, θ

s
c

2: while not done do

3: Sample mini-batches Ti, Si from T , S
4: Evaluate:

[△(θb;Si),△(θsc ;Si)] =
1

|Si|
∇θsR (Si; θ

s)

[△(θb; Ti),△(θtc; Ti)] =
1

|Ti|
∇θtL(Ti; θ

t)
5: Compute adapted parameters with SGD:

θt
′

= θt − η 1
|Ti|
∇θtL(Ti; θ

t)
6: Sample another mini-batch Tj from T
7: Evaluate:

[△(θb; Tj),△(θtc; Tj)] = ∇θt
′

1
|Tj |

L
(

Tj ; θ
t′
) [

I− η 1
|Ti|

(

∂2L(Ti;θ
t)

∂(θt)2

)]

8: Update:
θb ← θb − α[△(θb;Si) +△(θb; Tj)]
θtc ← θtc − α△(θtc; Tj)
θsc ← θsc − α△(θsc ;Si)

9: end while
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4 Sample selection of auxiliary data using the proposed

MetaFGNet

Established knowledge from domain adaptation suggests that the auxiliary set
S should ideally have a similar distribution of feature statistics as that of the
target set T . This can be achieved either via transfer learning [15], or via select-
ing/refining samples of S. In this work, we take the second approach and propose
a simple sample selection scheme that is naturally supported by our proposed
MetaFGNet (and in fact by any deep models with a two-head architecture as in
Figure 1).

Given a trained MetaFGNet, for each auxiliary sample xs from S, we com-
pute through the network to get two prediction vectors zss and zst , which are
respectively the output vectors of the two classifiers (before the softmax oper-
ation) for the source and target tasks. Length of zss (or zst ) is essentially equal
to category number of the source task (or that of the target task). To achieve
sample selection from the auxiliary set S, we take the approach of assigning a
score to each xs and then ranking scores of all auxiliary samples. The score of
xs is computed as follows: we first set negative values in zss and zst as zero; we
then concatenate the resulting vectors and apply L2 normalization, producing
z̃s = [z̃s⊤s , z̃s⊤t ]⊤; we finally compute the score for xs as

Os = z̃s⊤t · 1, (9)

where 1 represents a vector with all entry values of 1. A specified ratio of top
samples can be selected from S and form a new set of auxiliary data. Rationale
of the above scheme lies in that auxiliary samples that are more semantically
related to the target task would have higher responses in the target classifier,
and consequently would have higher values in z̃s⊤t .

Experiments in Section 5 show that such a sample selection scheme is ef-
fective to select images that are semantically more related to the target task
and improve performance of fine-grained classification. Some high-scored and
low-scored samples in the auxiliary data are also visualized in Figure 3.

5 Experiments

5.1 Datasets and implementation details

CUB-200-2011 The CUB-200-2011 dataset [26] contains 11,788 bird images.
There are altogether 200 bird species and the number of images per class is about
60. The significant variations in pose, viewpoint, and illumination inside each
class make this task very challenging. We adopt the publicly available split [26],
which uses nearly half of the dataset for training and the other half for testing.
Stanford Dogs The Stanford Dogs dataset [9] contains 120 categories of dogs.
There are 12,000 images for training and 8,580 images for testing. This dataset
is also challenging due to small inter-class variation, large intra-class variation,
and cluttered background.
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ImageNet Subset The ImageNet Subset contains all categories of the original
ImageNet [22] except the 59 categories of bird species, providing more realistic
auxiliary data for CUB-200-2011 [26]. Note that almost all existing methods on
CUB-200-2011 use the whole ImageNet dataset as the auxiliary set.

L-Bird Subset The original L-Bird dataset [11] contains nearly 4.8 million im-
ages which are obtained by searching images of a total of 10,982 bird species from
the Internet. The dataset provides urls of these images, and by the time of our
downloading the dataset, we only manage to get 3.3 million images from effective
urls. To build the dataset of L-Bird Subset, we first choose bird species/classes
out of the total 10,982 ones whose numbers of samples are beyond 100; we then
remove all the 200 bird classes that are already used in CUB-200-2011, since the
L-Bird Subset will be used as an auxiliary set for CUB-200-2011; we finally hold
out 1% of the resulting bird images as a validation set, following the work of
[11]. The final auxiliary L-Bird Subset contains 3.2 million images.

Remarks on the used datasets We use the ImageNet Subset, the ImageNet
ILSVRC 2012 training set [22], or the L-Bird Subset as the set of auxiliary data
for CUB-200-2011, and use the ImageNet ILSVRC 2012 training set as the set
of auxiliary data for Stanford Dogs.

Implementation detailsMany existing convolutional neural networks (CNNs),
such as AlexNet [12], VGGNet [23], or ResNet [8], can be used as backbone of
our MetaFGNet. In this work, we use the pre-activation version of the 34-layer
ResNet [8] in our experiments, which can achieve almost identical performance

on ImageNet with a batch normalization powered VGG16. To adapt any of them
for MetaFGNet, we remove its last fully-connected (FC) layer and keep the
remaining ones as the base network of MetaFGNet, which are shared by the
auxiliary and target data as illustrated in Figure 1. Two parallel FC layers of
classifiers are added on top of the base network which are respectively used for
the meta-learning objective of the target task and the regularization loss of the
auxiliary task. The MetaFGNet adapted from the 34-layer ResNet is used for
both the ablation studies and the comparison with the state of the art. For
a fair comparison with existing FGVC methods, base network is pre-trained on
ImageNet for all experiments reported in this paper. When using ImageNet Sub-
set or ImageNet as the auxiliary data, we start from the 60th epoch pre-trained
model, mainly for a quick comparison with baseline methods. When using L-Bird
Subset as the auxiliary data, we employ the released pre-trained model from [8].
The architectural design of our MetaFGNet is straightforward and simple; in
contrast, most of existing FGVC methods [32, 6, 13] adopt more complicated
network architectures in order to exploit discrimination of local parts with or
without use of ground-truth part annotations.

During each iteration of SGD training, we sample one mini-batch of auxiliary
data for the regularization loss, and two mini-batches of target data for the
meta-learning loss (cf. Algorithm 1 for respective use of the two mini-batches).
Each mini-batch includes 256 images. We do data augmentation on these images
according to [8]. In experiments using ImageNet Subset or ImageNet as the
auxiliary data, the learning rate (α in Algorithm 1) starts from 0.1 and is divided
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by 10 after every 10 epochs; we set momentum as 0.9 and weight decay as
0.0001; the meta learning rate (η in Algorithm 1) starts from 0.01 and is divided
by 10 after every 10 epochs, in order to synchronize with the learning rate;
the experiments end after 30 training epochs, which gives a total of the same 90
epochs as that of a pre-trained model. When using L-Bird Subset as the auxiliary
data, the experiments firstly fine-tune an ImageNet pre-trained model on L-Bird
Subset for 32 epochs, and then train our MetaFGNet for 8 epochs starting from
the 24th epoch fine-tuned model; the learning rate and meta learning rate are
divided by 10 respectively after 4 and 6 epochs; other settings are the same as
in experiments using ImageNet or ImageNet Subset as the auxiliary data. Given
parameters of such trained MetaFGNets and re-initialized target classifiers, we
fine-tune (θb, θ

t
c) of them on the target data for another 160 epochs, which is the

same for all comparative methods. We do sample selection from the auxiliary
data as the way described in Section 4, using the trained MetaFGNets before

fine-tuning. For the auxiliary sets of ImageNet Subset, ImageNet and L-Bird
Subset, we respectively use 50%, 6%, and 80% of their samples as the selected
top samples. Note that such ratios are empirically set and are suboptimal. After
sample selection, we use the remained auxiliary samples to form a new auxiliary
set, and train and fine-tune a MetaFGNet again from the MetaFGNet that have
been trained using the original auxiliary datasets.

5.2 Comparison with alternative baselines

The first baseline method (referred as “Fine-tuning” in tables reported in this
subsection) simply fine-tunes on the target dataset a model that has been pre-
trained on the ImageNet Subset or ImageNet, of which the latter is typically used
in existing FGVC methods. The second baseline (referred as “Joint training” in
tables reported in this subsection) uses a joint training approach of the objec-
tive (4). The third baseline (referred as “Fine-tuning L-Bird Subset” in tables
reported in this subsection) firstly fine-tunes the ImageNet pre-trained 34-layer
ResNet model on L-bird Subset, and then fine-tunes the resulting model on CUB-
200-2011. Experiments in this subsection are based on a MetaFGNet adapted
from the 34-layer ResNet, for which we refer to it as “MetaFGNet”. The base-
lines of Fine-tuning and Fine-tuning L-Bird Subset use half of the MetaFGNet
that contains parameters of (θb, θ

t
c). The baseline of Joint training uses the same

MetaFGNet structure as our method does.
Tables 1 and 2 report these controlled experiments on the CUB-200-2011

dataset [26]. Using ImageNet Subset or ImageNet as the set of auxiliary data,
Fine-tuning gives baseline classification accuracies of 73.5% and 76.8% respec-
tively; the result of Joint training is better than that of Fine-tuning, suggesting
the usefulness of the objective (4) for FGVC tasks - note that a recent method [7]
is essentially based on this objective. Our proposed MetaFGNet with regularized
meta-learning objective (7) achieves a result better than that of Joint training.
Our proposed sample selection scheme further improves the results to 75.3% and
80.3% respectively, thus justifying the efficacy of our proposed method. When
using L-Bird Subset as the auxiliary set, our method without sample selection
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improves the result to 87.2%, showing that a better auxiliary set is essential to
achieve good performance on FGVC tasks. Note that L-Bird Subset does not
contain the 200 bird species of the CUB-200-2011 dataset. Our method with
sample selection further improves the result to 87.6%, confirming the effective-
ness of our proposed scheme. Samples of the selected images and abandoned
images from three auxiliary datasets are also shown in Section 5.5.

Table 1. Comparative studies of different methods on the CUB-200-2011 dataset [26],
using ImageNet Subset as the auxiliary set. Experiments are based on networks adapted
from a 34-layer ResNet.

Methods Auxiliary set Accuracy (%)

Fine-tuning ImageNet Subset 73.5

Joint training w/o sample selection ImageNet Subset 74.5

Joint training with sample selection ImageNet Subset 75.0

MetaFGNet w/o sample selection ImageNet Subset 75.0

MetaFGNet with sample selection ImageNet Subset 75.3

Table 2. Comparative studies of different methods on the CUB-200-2011 dataset [26],
using ImageNet [22] or L-Bird Subset as the auxiliary set.

Methods Auxiliary set Accuracy (%)

Fine-tuning ImageNet 76.8

Joint training w/o sample selection ImageNet 78.8

Joint training with sample selection ImageNet 79.4

MetaFGNet w/o sample selection ImageNet 79.5

MetaFGNet with sample selection ImageNet 80.3

Fine-tuning L-Bird Subset L-Bird Subset 86.2

MetaFGNet w/o sample selection L-Bird Subset 87.2

MetaFGNet with sample selection L-Bird Subset 87.6

In Figure 2, we also plot the training loss curves, using both the ImageNet
auxiliary data and the target CUB-200-2011 data, of our method and Joint
training, and also their fine-tuning loss curves on the target data. Figure 2 shows
that our MetaFGNet converges to a better solution that supports a better fine-
tuning than Joint training does.

5.3 Results on the CUB-200-2011

We use the MetaFGNet adapted from a 34-layer ResNet to compare with ex-
isting methods on CUB-200-2011 [26]. The most interesting comparison is with
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Fig. 2. Left: training loss curves of MetaFGNet and Joint training. Right: fine-tuning
loss curves of MetaFGNet and Joint training. The auxiliary and target datasets are
ImageNet and CUB-200-2011 respectively. MetaFGNet and Joint training models are
adapted from the 34-layer ResNet.

the methods [20, 2, 18, 4, 14, 28, 11] that focus on learning from the whole bird
images. In contrast, part based methods [35, 34, 6, 37, 33, 32, 31, 13] enjoy a clear
advantage by exploiting discrimination of local parts either in a weakly super-
vised manner, or in a supervised manner using ground-truth part annotations.
Table 3 also shows that our method with L-Bird Subset as auxiliary data outper-
forms all existing methods even when they use ground-truth part annotations.
We also construct our MetaFGNet based on the popular VGGNet. Using L-
Bird Subset as the auxiliary set, our MetaFGNet with sample selection gives an
accuracy of 87.5%, which also confirms the efficacy of our proposed method.

5.4 Results on the Stanford Dogs

We apply the MetaFGNet to the Stanford Dogs dataset [9], using ImageNet as
the auxiliary data. The used MetaFGNet is adapted from a 152-layer ResNet
[8], which is the same as the one used in the state-of-the-art method [7]. Table 4
shows the comparative results. Our method outperforms all exiting methods with
a large margin. We note that previous methods use ImageNet as the auxiliary

data for the Stanford Dogs task, however, it is inappropriate because the dataset

of Stanford Dogs is a subset of ImageNet. Thus, we remove all the 120 categories
of dog images from ImageNet to introduce an appropriate auxiliary dataset for
the Stanford Dogs dataset [9]. Based on a 34-layer ResNet [8], simple fine-tuning
after pre-training on the resulting ImageNet images gives an accuracy of 69.3%;
our MetaFGNet with sample selection improves it to 73.2%.

5.5 Analysis of selected and abandoned auxiliary images

In Fig 3, we qualitatively visualize the selected top-ranked images from ImageNet
[22], ImageNet Subset, and L-Bird Subset, and also the abandoned bottom-
ranked images respectively from the three auxiliary sets, when using CUB-200-
2011 [26] as the target data. It can be observed that for ImageNet and ImageNet
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Table 3. Comparison of different methods on the CUB-200-2011 dataset [26]. Methods
of ‘part supervised’ use ground-truth part annotations of bird images. Methods of
‘part aware’ detect discriminative local parts in a weakly supervised manner. Result
of [11] is based on own implementation using the currently available L-Bird Subset.
The method [14] generates high-dimensional, second-order features via bilinear pooling,
and the result of [28] is from a multi-scale ensemble model; both of the methods make
contributions to image based FGVC complementary to our proposed MetaFGNet.

Methods Auxiliary Set Part Supervision Acc. (%)

CNNaug-SVM [20] ImageNet n/a 61.8
Deep Optimized [2] ImageNet n/a 67.1
MsML [18] ImageNet n/a 67.9
Deep Metric [4] ImageNet + Web n/a 80.7
Bilinear [14] ImageNet n/a 84.1
Deep Image [28] ImageNet n/a 84.9
Rich Data [11] L-Bird Subset n/a 86.2

MetaFGNet with sample selection ImageNet n/a 80.3
MetaFGNet with sample selection L-Bird Subset n/a 87.6

Weakly sup. [35] ImageNet part-aware 80.4
PDFS [34] ImageNet part-aware 84.5
RA-CNN [6] ImageNet part-aware 85.3
MA-CNN [37] ImageNet part-aware 86.5

Part R-CNN[33] ImageNet part supervised 73.9
SPDA-CNN[32] ImageNet part supervised 81.0
Webly-sup.[31] ImageNet + Web part supervised 84.6
Hsnet[13] ImageNet part supervised 87.5

Table 4. Comparison of different methods on the Stanford Dogs dataset [9].

Methods Auxiliary Set Part Supervision Acc. (%)

Weakly sup. [35] ImageNet part-aware 80.4
DVAN [36] ImageNet part-aware 81.5

MsML[18] ImageNet n/a 70.3
MagNet[21] ImageNet n/a 75.1
Selective joint training[7] ImageNet n/a 90.3

MetaFGNet with sample selection ImageNet n/a 96.7

Subset, images that are semantically related to the target CUB-200-2011 task
are ranked top and selected by our proposed scheme; for L-Bird Subset, noisy
images that are irrelevant to the target task are ranked bottom and removed.
Quantitatively, when using ImageNet as the auxiliary dataset, 65.3% of the se-
lected auxiliary images belong to the basic-level category of “bird”.
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(a) Top-ranked images (left) and bottom-ranked images (right) from ImageNet

(b) Top-ranked images (left) and bottom-ranked images (right) from ImageNet Subset

(c) Top-ranked images (left) and bottom-ranked images (right) from L-Bird Subset

Fig. 3. (a) Top-ranked images and bottom-ranked images from ImageNet. (b) Top-
ranked images and bottom-ranked images from ImageNet Subset. (c) Top-ranked im-
ages and bottom-ranked images from L-Bird Subset. Results are obtained by using
MetaFGNet and our sample selection scheme on the CUB-200-2011 dataset [26].

6 Conclusion

In this paper, we propose a new deep learning model termed MetaFGNet, which
is based on a novel regularized meta-learning objective that aims to guide the
learning of network parameters so that they are optimal for adapting to a target
FGVC task. Based on MetaFGNet, we also propose a simple yet effective scheme
for sample selection from auxiliary data. Experiments on the benchmark CUB-
200-2011 and Stanford Dogs datasets show the efficacy of our proposed method.
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