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Part-Aware Fine-grained Object Categorization
using Weakly Supervised Part Detection Network

Yabin Zhang, Kui Jia, and Zhixin Wang

Abstract—Fine-grained object categorization aims for distin-
guishing objects of subordinate categories that belong to the same
entry-level object category. It is a rapidly developing subfield
in multimedia content analysis. The task is challenging due to
the facts that (1) training images with ground-truth labels are
difficult to obtain, and (2) variations among different subordinate
categories are subtle. It is well established that characterizing
features of different subordinate categories are located on local
parts of object instances. However, manually annotating object
parts requires expertise, which is also difficult to generalize to
new fine-grained categorization tasks. In this work, we propose
a Weakly Supervised Part Detection Network (PartNet) that is
able to detect discriminative local parts for the use of fine-
grained categorization. A vanilla PartNet builds on top of a
base subnetwork two parallel streams of upper network layers,
which respectively compute scores of classification probabilities
(over subordinate categories) and detection probabilities (over
a specified number of discriminative part detectors) for local
regions of interest (RoIs). The image-level prediction is obtained
by aggregating element-wise products of these region-level proba-
bilities, and meanwhile diverse part detectors can be learned in an
end-to-end fashion under the image-level supervision. To generate
a diverse set of RoIs as inputs of PartNet, we propose a simple
Discretized Part Proposals module (DPP) that directly targets
for proposing candidates of discriminative local parts, with no
bridging via object-level proposals. Experiments on benchmark
datasets of CUB-200-2011, Oxford Flower 102 and Oxford-
IIIT Pet show the efficacy of our proposed method for both
discriminative part detection and fine-grained categorization. In
particular, we achieve the new state-of-the-art performance on
CUB-200-2011 and Oxford-IIIT Pet datasets when ground-truth
part annotations are not available.

Index Terms—Fine-grained object categorization, part pro-
posal, weakly supervised learning

I. INTRODUCTION

F INE-grained object categorization aims for distinguishing
objects of subordinate categories that belong to the same

entry-level object category, e.g., various species of birds [1],
[2], [3], pets [4], [5], or flowers [6]. The difference between
entry-level and fine-grained object categorization is shown
in Figure 1. Owing to its importance in a wide variety of
applications, e.g., multimedia information retrieval [7], [8],
[9], e-commerce [10] and rich image captioning [11], [12],
fine-grained object categorization has attracted widespread
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attention from multimedia community. However, the fine-
grained categorization tasks are challenging because the varia-
tions among different subordinate object categories are subtle,
which are often overwhelmed by those caused by arbitrary
poses, viewpoint change, and/or occlusion. It is also difficult
to obtain and label a large number of training images of
subordinate object categories. Consequently, the performance
of fine-grained categorization lies behind that of generic object
recognition.

Fig. 1. Entry-level object categorization versus fine-grained object catego-
rization. In entry-level object categorization, we only need to distinguish the
first two images of “Bird” from the last two images of “Cat”. In fine-grained
object categorization, the subcategories belonging to the same entry-level one
should be further differentiated.

It is well known that characterizing features of different
subordinate object categories are located at some local parts
of object instances (e.g., the head and body of bird as
illustrated in Figure 3). Correspondingly, many fine-grained
categorization datasets provide ground-truth part annotations
[2], [3]. Existing methods [13], [14], [15], [16], [17] use these
part annotations to train detection models that can detect from
input images the most discriminative parts for the use of fine-
grained categorization. However, manually annotating object
parts requires expertise, which is also difficult to generalize
to fine-grained categorization tasks of new entry-level object
categories. To get relief from manual part annotations, a num-
ber of recent methods [18], [19], [20], [21], [22], [23], [24],
[25], [26] are proposed that aim for mining and leveraging dis-
criminative local parts using image-level category labels only.
Weakly supervised learning [20], [21], [22], [24], [25] and
attention mechanism in deep networks [18], [19], [23], [26] are
the two main workhorses to achieve such a goal. Given region
proposals [27], weakly supervised learning based methods use
a separate stage of region clustering [20], [21], [22] or region
mining [24], [25] to learn part detectors, which is suboptimal
for the final task of fine-grained categorization. Attention-
based methods [18], [19], [26] overcome such a limitation
by automatically identifying and using salient/discriminative
pixels and regions in an end-to-end fashion. However, they
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seem to have the weakness that a diverse set of discriminative
parts are difficult to obtain, which restricts their practical
performance.

To address the above limitations, we propose in this work
a novel fine-grained categorization architecture called Weakly
Supervised Part Detection Network (PartNet). A vanilla Part-
Net builds on top of a base convolutional (conv) subnetwork
two parallel streams of upper network layers: given proposed
regions of interest (RoIs), the classification stream performs
region-level differentiation over subordinate object categories
and outputs classification probabilities; the detection stream
learns a specified number of part detectors that assign associ-
ation probabilities of these RoIs with each of the learned detec-
tors; the final image-level prediction is obtained by aggregating
element-wise products of region-level probabilities of the two
streams. PartNet training uses image-level supervision that
enables the detection stream to achieve end-to-end learning
of diverse part detectors in a weakly supervised manner.

Our proposed PartNet requires proposals of RoIs as inputs
of the classification and detection streams. Existing fine-
grained categorization works [20], [21], [22], [24], [25] either
directly use regions provided by off-the-shelf object proposal
methods such as Selective Search (SS) [27], or segment
regular sub-regions from object proposals. However, criteria of
object proposal methods are designed for region completeness
of object instances, with no mechanism of proposing dis-
criminative local parts; segmenting regular sub-regions from
object proposals is an indirect approach to discriminative part
proposals. Inspired by the discretization of proposal space in
Region Proposal Networks (RPN) [28], we introduce in this
work a simple but effective Discretized Part Proposals module
(DPP). Our part proposals are anchored at salient locations
in individual spatial cells of feature maps, where activation
values are of higher magnitude. Correspondingly, candidates
of discriminative local parts can be proposed independently of
spatial locations of (possibly false positive) object instances.
Experiments on benchmark fine-grained object categorization
datasets show the efficacy of the proposed method. We sum-
marize major contributions of this work as follows.
• We introduce in this paper a novel fine-grained catego-

rization architecture called PartNet (cf. Section III-A).
By using parallel classification and detection streams that
process RoI features and aggregating their region-level
scores, the proposed PartNet achieves end-to-end learning
of diverse part detectors in a weakly supervised manner.

• Existing region proposal methods focus on completeness
of object-level regions, which is not directly relevant to
proposing candidates of discriminative local parts. We
introduce in this work a simple but effective DPP (cf.
Section III-B), which supports the success of PartNet for
fine-grained categorization and could also be useful to
other tasks that rely on discriminative local features.

• We present a few variants of PartNet including (1) PartNet
with the higher resolution of feature maps and (2) Part-
Net with orthogonal weight matrix in the classification
stream (cf. Section III-C). Experiments on the bench-
mark datasets of CUB-200-2011, Oxford Flower 102 and
Oxford-IIIT Pet show that our proposed PartNet and its

variants are effective for both discriminative part de-
tection and fine-grained categorization. In particular, we
achieve the new state-of-the-art performance on the CUB-
200-2011 and Oxford-IIIT Pet datasets when ground-truth
part annotations are not available (cf. Section IV).

II. RELATED WORKS

In this section, we first present a brief review of fine-grained
object categorization methods. We discuss how discriminative
parts among fine-grained categories are essential for this task,
with special focus on those methods that do not rely on
ground-truth part annotations. We also discuss methods of
object/part proposal and weakly supervised object detection,
which are the techniques closely related to our proposed
method.

A. Part-Aware Fine-Grained Object Categorization

Since the introduction of fine-grained categorization tasks,
researchers realize that extracting features from discriminative
local parts is essential to the success of the task. For example,
[29] sequentially searches discriminative parts by unifying
heuristic function and successor function via a Long Short-
Term Memory network (LSTM). The heuristic function evalu-
ates the informativeness of the proposed bounding boxes and
the successor function predicts the offsets to the discriminative
proposals of the proposed boxes. All the detected image parts
are fused for fine-grained recognition. Jointly optimizing the
fine-grained classification loss and the Euclidean distances
between the proposed part proposals and the ground-truth part
proposals, state-of-the-art result is obtained on the benchmark
CUB-200-2011 dataset [2]. To get relief from manual part
annotations, recent efforts resort to weakly supervised learning
[20], [21], [22], [24], [25] and/or attention mechanism in deep
networks [18], [19], [23], [26], in order to either implicitly
make use of information of salient parts [18], [26], or explic-
itly identify discriminative local parts based on image-level
category labels only [19], [21], [20], [22], [23], [24], [25]. We
briefly review some of these representative methods as follows.

Based on off-the-shelf object proposal methods (e.g., SS
[27]), multi-scale part proposals are generated in [21] at
regular spatial grids of object proposals. These part proposals
are then clustered from which useful ones are selected, in
a weakly supervised manner, by measuring their importance
scores for fine-grained categorization. Xiao et al. [20] also
use image-level supervision and patch clustering to identify
discriminative parts from patch proposals: a classifier of the
entry-level category is first trained and used to filter out
background patches; spectral clustering is then applied to the
remaining patches to learn part detectors (e.g., cluster centers),
which are further used to select discriminative parts from
patch proposals; final classification is performed using features
of the detected parts. Image-level supervision and object-
part spatial constraint are applied to select the discriminative
part proposals in [22], and then neural clustering clusters
selected proposals into semantic parts: a pre-trained entry
level classifier is fine-tuned on target data and used to filter
out noisy patches; object-level bounding boxes are obtained
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by class activation mapping (CAM) [30] and used to further
refine the selected proposals; part detectors, which are obtained
by performing clustering on the neurons of a middle layer
in the classification model, cluster selected proposals into
diverse semantic parts. Zhang et al. [24], [25] learn initial
part detectors from distinctive region proposals by measuring
activation outputs of network neurons; the detectors are refined
via iterative alternation between new distinctive sample mining
and part model retraining; neural activations are pooled into
the final representation via a spatially weighted combination
of Fisher Vectors coding, which considers the importance of
each activation. In [19], multi-scale attention mechanism is
employed into classification networks in order to guide deep
feature learning to focus on discriminative (species-specific)
regions, where starting from the full image, a hierarchy of
three-level region scales are gradually attended, and their fea-
tures are extracted for classification. Fine-grained categoriza-
tion is obtained by integrating the information of three scale
regions. In [18], a diversified LSTM based attention model is
proposed that aims to learn a diverse set of discriminative
region attentions, so that classification among fine-grained
categories can rely more on features of these attended regions.
In [23], multiple part attentions are generated by clustering,
weighting from spatially-correlated convolutional channels.
Part-level patches of each part and object-level images are
taken as input to train individual part-CNN. The features of
each part and object image of the part-CNNs are concatenated
together for final classification. In [26], activation values of
feature maps are defined as assignment strengths for surrogate
parts, and the part-level features are generated within the
Bag-of-Words framework. Multi-scale and multi-position part
features are obtained with the scale pooling and sub-region
partition schemes on the feature maps respectively. The final
image prediction is the product of the global image prediction
and the part-level prediction achieved by averaging the parts’
features.

Attention-based methods have the nice property that
salient/discriminative pixels and regions can be automatically
learned and attended in an end-to-end fashion. However, they
seem to have the weakness that a diverse set of discriminative
parts are difficult to obtain. 1 For example, only one (but multi-
scale) part is attended in [19]; consequently, other potentially
discriminative parts are ignored in classification. On another
hand, existing methods based on explicit region proposals
[21], [20] use a separate stage of region clustering to obtain
part detectors, which is suboptimal for the final task of fine-
grained categorization. While our proposed PartNet also relies
on explicit region proposals, we employ in the upper network
parallel streams of classification and detection, which simulta-
neously achieve discriminative part detection and fine-grained
categorization. The detection stream also enables learning
of diverse part detectors. Superior results on the benchmark
datasets [2], [6] show the efficacy of our proposed method.

1Even if automatic detection of salient regions is enabled by attention-
based methods, it seems that explicit region proposals (e.g., via multi-scale
proposals at regular spatial grids) always help. In fact, regions of varying
sizes are cropped in [18] at different locations of the original image in order
to provide more diversified attention canvas.

B. Weakly Supervised Object Detection/Localization

Weakly supervised object detection/localization aims to
learn object detectors using only image-level category labels,
i.e., ground-truth object annotations (e.g., object bounding
boxes) are not required. Simple extensions of such techniques
could be useful for fine-grained categorization by learning
part detectors in a weakly supervised manner. There are
many weakly supervised object detection/localization methods
proposed in the literature, among which CNN based methods
show great promise recently [30], [31], [32], [33], [34]. This
may be due to the fact that CNNs have remarkable localization
ability despite being trained on image-level labels [30]. We
particularly mention here a model of Weakly Supervised Deep
Detection Networks (WSDDN) [31]. It introduces a two-
stream network architecture where the classification stream
differentiates each object proposal among different object cate-
gories, and the detection stream ranks for each category all the
object proposals. Scores from the two streams are aggregated
via element-wise product, which are finally used for image-
level supervision. Our proposed PartNet is inspired by [31].
Instead of ranking object proposals for each category in the
detection stream, we rely on part proposals and learn multiple
part detectors that altogether contribute to the classification of
fine-grained categories.

C. Generation of Object/Part Proposals

Both our proposed PartNet and other part-aware fine-grained
categorization methods [21], [20], [22] rely on proposals
of local object regions/parts. Part proposals differ from the
established object proposal techniques [27], [35] in that salient
part locations and part boundaries are less clearly defined.
Consequently, it is less obvious to extend existing object
proposal techniques for a good part proposal method. Nev-
ertheless, existing efforts either directly use object proposal
methods for use of part proposals, e.g., SS [27] is used in
[20], [22], or simply use sub-regions of object proposals as part
proposals [21]. In this work, we propose a simple DPP that
borrows the idea of spatial space discretization from RPN [28].
Our part proposals are anchored at discriminative locations of
feature maps, which are obtained by training using image-level
category labels only. Comparative studies with SS [27] show
the efficacy of our proposed DPP.

III. THE PROPOSED METHOD

In this section, we present in details our proposed PartNet,
which is empowered by a simple but effective DPP module.
We also introduce a few variants of PartNet that altogether
contribute to an effective solution to part-aware fine-grained
categorization.

A. Weakly Supervised Part Detection Network

As discussed in Section II, it is well established that identifi-
cation of discriminative local parts is essential for fine-grained
categorization. In this work, we design a novel architecture
called PartNet (cf. Figure 2 for an illustration), which ex-
plicitly learns part detectors using image-level category labels
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Fig. 2. Framework of the PartNet. The base subnetwork represents the convolutional layers that are pre-trained on ImageNet dataset firstly and then fine-
tuned on the fine-grained training data. The DPP represents our proposed module of Discretized Part Proposals (cf. Section III-B) for generating RoIs. The
classification stream differentiates region-level proposals over subordinate object categories, while the detection stream assigns association probabilities of
those proposals with part detectors. Region-level probabilities of the two streams are combined with matrix multiplication. The image-level classification is
obtained by averaging the classification probabilities of different detected parts. The different softmax layers are detailed in Section III-A.

only. Examples of our detected local parts from the fine-
grained categorization datasets are also shown in Figure 3 and
Figure 7.

A vanilla PartNet uses conv layers as its base subnetwork.
Assume the final conv layer of the base subnetwork outputs N
feature maps. Using our proposed DPP (cf. Section III-B), a
number R of local regions of those feature maps are proposed
that give RoIs on the input image. These RoIs are of varying
sizes, and we use RoI pooling [36] to produce features of the
fixed size m ×m, which, after vectorization, gives a feature
vector fRoI ∈ RNm2

for each proposed RoI. We use two
parallel streams of fully connected (FC) layers on top of the
base subnetwork to further process, in a batch mode, these
RoI features {fRoI}. Assume there are C fine-grained object
categories in the considered task. The classification stream
performs differentiation of the proposed RoIs among these
categories. The detection stream learns a specified number
P of patterns of parts (i.e., part detectors) that can identify
from the proposed RoIs the most effective ones for fine-
grained categorization. The two streams output part-level
scores of classification/detection probabilities, which are then
aggregated and used for image-level training or inference. We
present component-wise specifics of our proposed PartNet as
follows.

1) The classification stream: As shown in Figure 2, we
use two consecutive FC layers (with ReLUs) to differentiate
each of the RoI feature vectors {f i

RoI}Ri=1 into fine-grained
categories. Since some of the proposed RoIs are on the
background, which are in fact common in different fine-
grained categories, we introduce an additional output neuron
in the second FC layer that corresponds to the background
category. The second FC layer thus outputs a matrix Xcls of
the size (C+1)×R. A softmax operator, termed as “category
softmax”, is then followed to make Xcls as a score matrix
Scls ∈ R(C+1)×R of classification probabilities. Elements of
Scls are computed as

sijcls =
ex

ij
cls∑C+1

c=1 e
xcj
cls

, (1)

where xijcls is an entry of Xcls, and i and j index the categories
and RoI features respectively.

2) The detection stream: The detection stream aims for
learning a specified number P of part detectors that detect
from (the proposed RoIs of) the input image local parts that
are most useful/discriminative for fine-grained categorization.
To this end, we use two consecutive FC layers (with ReLUs)
to process RoI features {f i

RoI}Ri=1. To model those local parts
that are either on the background or less discriminative among
fine-grained categories, we use P + 1 output neurons in the
second FC layer. Outputs of the second FC layer are denoted
as Xdet ∈ R(P+1)×R. FC layers themselves barely give the
detection stream the ability to learn distinctive and semanti-
cally meaningful part detectors. We use a softmax operator,
termed as “part softmax”, immediately following the second
FC layer, which gives the output matrix S̃det ∈ R(P+1)×R.
Elements of S̃det are computed as

s̃ijdet =
ex

ij
det∑P+1

p=1 e
xpj
det

, (2)

where xijdet is an entry of Xdet, and i and j index the part
detectors and RoI features respectively. While there are no
ground-truth part annotations available, learning part detectors
is made possible by the use of part softmax (cf. Eq. (2)):
in the forward pass, each proposed RoI is associated with
one of the P + 1 output neurons of the second FC layer
by scaling up the corresponding score toward the value of 1
while suppressing others; this is reinforced in the backward
pass and consequently, patterns of discriminative parts are
learned as parameters of FC layers in a weakly supervised
and locally optimal manner. To give an intuition on what
we have learned for part detectors, we illustrate in Figure
3 examples of the proposed RoIs for an input image, where
scores in each column are the ones computed from (2) for
each RoI, and rows of different colors correspond to individual
part detectors, including the background one. Figure 3-(a)
shows that these RoIs are differentiated and associated with
different part detectors, and those associated with the same one
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(a) Values of s̃ijdet for the example region proposals (b) Top-scored parts

Fig. 3. (a) Visualization of the detection scores s̃ijdet of equation (2) when applying PartNet to the CUB-200-2011 dataset, where score precision is rounded
to the level of 10−3. The first row shows the input image (left) and example region proposals (right) generated by the DPP module. The second, third, fourth,
and bottom rows respectively present the scores of three part detectors and the background detector for each proposal. (b) Visualization of input images and
their respective detected (top-scored) local parts. Please refer to Figure 7 for more examples of detected local parts.

Fig. 4. In case 1, the RoIs that have larger values in s′det also have larger
values in s′cls, and the classification probability is larger. Otherwise, the
classification probability is smaller in case 2. In order to achieve accurate
classification, the RoIs, that have larger values in the right category of S′cls,
should consistently have larger values in S′det.

have the similar visual appearance, suggesting that individual
part detectors are trained to characterize patterns of local
distinctiveness. Figure 3-(b) also shows that when applying
these learned part detectors to images of different categories,
they detect local regions that have the potential of fine-grained
discrimination.

Then, we use a second softmax operator, termed as “pro-
posal softmax”, on S̃det to rank their associations with each of
the P part detectors. This produces Sdet ∈ R(P+1)×R whose
elements are compute as

sijdet =
es̃

ij∑R
r=1 e

s̃ir
. (3)

The second softmax also serves as a normalization layer that
normalizes RoI scores associated with each part detector (i.e.,
each row of S̃det), so that the resulting Sdet can be better
used for score aggregation with those of the classification
stream, as explained shortly. In this work, we by default set
the number P of part detectors as 3. We also investigate the
effects of different values of P on fine-grained categorization
(cf. Section IV-B).

3) Aggregation of classification and detection scores for
image-level supervision/inference: The classification and de-
tection streams output score matrices Scls and Sdet respec-
tively for all proposals. To use them for image-level super-
vision or inference, we first remove from Scls the last row
that represents the probabilities of RoIs’ belonging to the
background category, and also remove from Sdet the last
row that contains scores of RoIs associated with the back-
ground/irrelevant part detector, resulting in reduced matrices
S′cls ∈ RC×R and S′det ∈ RP×R respectively. Suppose an
input image is of the cth fine-grained category. We denote the
cth row of S′cls as s′>cls ∈ RR that contains the probabilities
that the R RoIs are classified as the cth category. We similarly
denote the pth row of S′det as s′>det ∈ RR that contains the
probabilities that the R RoIs are detected as instances of the
pth discriminative parts. Discriminative part detection requires
that RoIs that have larger values in s′det (i.e., the detected
instances of the pth part) should consistently have larger values
in s′cls (cf. Figure 4 for an illustration). We thus choose to use
s′>clss

′
det as a measure of part-level classification confidence.

Write compactly in a matrix form we have S′clsS
′>
det ∈ RC×P ,

each row of which contains the probabilities that the detected
discriminative parts are of a certain fine-grained category. We
then average the part-level probabilities to form the image-
level classification representation y ∈ RC of the input image
as

y =
1

P
S′clsS

′>
det1P , (4)

where 1P denotes a P -dimensional vector with all values of 1.
Note that as mentioned in Section III-A2, the proposal softmax
(cf. Eq. (3)) in the detection stream serves as a normalization
layer that ensures each entry value of S′clsS

′>
det is in the

range [0, 1]. Consequently, the computed y in Eq. (4) can be
considered as image-level classification probabilities.

We use the result of Eq. (4) as the inference of a PartNet
for an input image. To train the PartNet, assume a set of
M training images are given, each of which has its one-hot
vector form of ground-truth category label as g ∈ RC . Denote
parameters of the PartNet collectively as a vector θ, we use



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, AUGUST 2019 6

the following loss of binary cross-entropy to train the network

λ

2
‖θ‖22 −

M∑
i=1

C∑
j=1

gij log yij(θ) + (1− gij) log(1− yij(θ)), (5)

where gi and yi are respectively the ground truth label and
inference result for the ith training sample, and gij and yij
are their jth entries. We optimize Eq. (5) using Stochastic
Gradient Descent (SGD) with momentum.

B. Discretized Part Proposals in Spatial Cells of Feature Maps

The PartNet presented in Section III-A needs proposals of
RoIs that specify local regions of input images for classifica-
tion and detection streams to work on. Existing part proposal
methods [21], [22], [20] either directly use regions provided
by object proposal method [27], or use their regular sub-
regions. However, object proposal methods use criteria that
focus on region completeness of object instances and are not
effective by design for proposing candidates of discriminative
parts. Segmenting regular sub-regions from object proposals
can help, but it is not a direct approach to discriminative part
proposals. In this work, we propose a simple DPP method
towards this goal. Our method is inspired by the discretization
of proposal space in RPN [28]; but we do not have a training
process since ground-truth part annotations are not available.

It is well known that CNNs have a remarkable localization
ability despite being trained using image-level labels [30],
and ideally the discriminative parts should locate at positions
of feature maps that have larger feature values. A similar
idea is also adopted in [26] where the values of feature
maps are defined as assignment strengths for surrogate parts.
We thus opt to generate part proposals anchored at these
positions directly. More specifically, given feature maps of
the size C × W × H that have C channels, we calculate a
histogram vector h ∈ RWH that counts for each of the W×H
spatial locations the occurrence that channel-wise peak value
is located at the current position, and use the obtained h to
identify discriminative spatial locations. The location of the
peak value for each channel is also used in [23]. Counts in
the histogram h measure the degrees of discrimination for
different spatial locations, and part proposals are anchored at
those with more counts.

To make part proposals spatially spread over the feature
maps, we regularly divide the W × H spatial locations into
S×S non-overlapping cells (e.g., S = 4), which produces the
corresponding sub-vectors from the histogram vector h. We
use spatial locations corresponding to the max count of each
histogram sub-vector as our anchors of part proposals. For
each anchor position, we define K anchor boxes of varying
sizes and aspect ratios [28]. We by default set K = 28 in our
experiments, and Table I gives its box sizes and aspect ratios.
The influence of using different K values is also investigated
in Section IV-C.

C. Other Variants

In this section, we present two variants of PartNet in order
to boost the performance on fine-grained categorization tasks.

TABLE I
THE SPECIFIED SIZES AND ASPECT RATIOS WHEN WE USE K = 28

ANCHOR BOXES FOR EACH ANCHOR POSITION ON THE FEATURE MAPS.

Anchor sizes 32 52 72 92 112 132 152 172 192 212

Aspect ratios 1:1 1:1 1:2 2:1

Higher resolution of feature maps Variations among fine-
grained categories are often subtle, regional, and imaged in
finer details. However, finer details could disappear when
feature maps are of lower resolution. To avoid this issue,
we present a variant of the vanilla PartNet as follows by
modifying the base subnetwork structure. For the models
that downsample feature maps via stride-2 conv layers (e.g.,
ResNet [37]), its last layer of the classifier is removed firstly,
then we replace its last stride-2 conv layer (i.e., conv5 1 in
ResNet-34) with a stride-1 one, and modify the subsequent
conv layers via 2-dilated conv layers [38]. For the models
that downsample feature maps via stride-2 max pooling layers
(e.g., VGGNet [39]), the last stride-2 max pooling layer and
the subsequent layers are removed. By this way, the resolution
of the base subnetwork feature maps is doubled.
Orthogonal weight matrix in the classification stream
Orthogonal weight matrices are observed to be helpful to
propagate information in deep networks [40]. In this work,
we present a variant of the vanilla PartNet that applies the
technique of Singular Value Bounding (SVB) [40] to the
second FC layer in the classification stream. We expect this
variant to produce more discriminative scores of classification
probabilities among different fine-grained categories.

D. Final Prediction

The proposed PartNet achieves fine-grained categorization
by aggregating regional discrimination of detected individual
parts. However, each of the individual parts may independently
contribute to fine-grained categorization their own discrim-
ination. The input image may also provide complementary
holistic features. To utilize all these part-level and image-
level discriminative information, we adopt a region zooming
strategy as in [23], [19], [14], [22].

Specifically, given a trained PartNet, the P part detectors of
the detection stream respectively rank the R region proposals
generated by DPP, resulting in a score matrix S′det ∈ RP×R

(cf. Section III-A3). Intuitively, if features of a proposal i
match pattern of a part j, then the (j, i) entry of S′ji

det would
have a larger value, otherwise it would have a smaller one.
We thus select for each of the P part detector M region
proposals of top scores (e.g., M = 50), and use the selected
regions to fine-tune the image-level model, resulting in P
part-level models. During testing, the top-1 region proposal
for each part detector is selected and zoomed as the input
of the corresponding part-level model. Our final prediction is
made by averaging the classification probability of PartNet
with those of its associated image-level and the P part-level
models. We term such an ensemble model as PartNet-Full.
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Fig. 5. The framework of the DPP module. The DPP takes as input the feature maps that are generated by the last convolutional layer. A histogram, which is
obtained by counting the occurrence of channel-wise peak value for each of the spatial locations, is firstly generated to measure the degrees of discrimination
for different spatial locations. All the spatial locations are divided into S × S non-overlapping cells, and K anchor boxes of varying sizes and aspect ratios
are proposed anchored at the location corresponding to the max count of the histogram for each cell.

IV. EXPERIMENTS

In this section, we conduct fine-grained categorization ex-
periments on the benchmark datasets of CUB-200-2011 [2],
Oxford Flower 102 [6] and Oxford-IIIT Pet [5]. We present ab-
lation studies to investigate the component-wise effectiveness
of our proposed PartNet, its variants, and the DPP scheme,
and also compare with the state of the art. We implement
the proposed method on PyTorch and provide the codes at
https://github.com/YBZh/PartNet.

A. Datasets and implementation details

CUB-200-2011 [2] The Caltech-UCSD Birds 200-2011
dataset is the most widely-used dataset for fine-grained cat-
egorization and contains 200 species of birds. It includes
5,994 images for training and 5,794 images for testing. For
each image, one bounding box annotation and 15 keypoint
annotations are given. We do not use these bounding box or
keypoint annotations in our experiments.
Oxford Flower 102 [6] Oxford Flower 102 contains 102
categories of flowers. There are 1,020 images for training,
1,020 images for validation, and 6,149 images for testing.
We do not use the image segmentations provided in this
dataset, and instead, we only use the category labels in our
experiments.
Oxford-IIIT Pet [5] Oxford-IIIT Pet contains 37 pet subcate-
gories, among which 12 are cat subcategories and 25 are dog
subcategories. There are 3,680 images for training and 3,669
images for testing. We do not use the pixel level segmentation
provided in this dataset, and instead, we only use the category
labels in our experiments.
Baselines and implementation details We first present the
baseline models that we use to compare with our proposed
methods. Given a 34-layer ResNet [37] that is pre-trained
on the ImageNet [41], we modify its final FC layer of the
classifier to make the number of its output neurons the same
as that of the target fine-grained categories. This baseline
model is termed as ResNet-34. To fairly compare the baseline
with variants of our proposed PartNet, we also introduce an
additional baseline of Dilated ResNet-34, which is obtained
by modifying ResNet-34 as the way described in Section
III-C. The ResNet-34 and Dilated ResNet-34 based models

are used in our ablation studies. To investigate the efficacy
of our proposed contributions when comparing with many
of the existing methods, we also construct our methods on
the VGGNet [39]. The VGGNet, where batch normalization
[42] is used to improve network training, is pre-trained on
the training images of ImageNet dataset [41] firstly and then
we modify its structure as the way described in Section III-C.
Then a FC layer is followed as the fine-grained categories
classifier. Those baseline models are fine-tuned on the target
fine-grained categorization datasets and are termed as image-
level models.

Our proposed PartNet (and its variants) are constructed
based on the above image-level models. Taking the ResNet-34
as an example, we build up the base subnetwork of PartNet
by removing its layer of global average pooling and also
the subsequent (final) layer of classifier; we then use an
RoI pooling layer [36] whose inputs are formed by the part
proposals generated by DPP, together with output feature maps
of the base subnetwork; following the RoI pooling layer, a
parallel pair of detection and classification streams are used
that respectively produce scores of detection and classification
probabilities; these scores are finally aggregated and used for
image-level training or inference (cf. Section III-A). Figure 2
gives an illustration.

To train the above models, we use SGD with momentum:
we set the weight decay as 1e-4 and momentum as 0.9; we
train each model for 160 epochs with a batch size of 128;
for parameters that are initialized from pre-trained models,
we use a learning rate of 1e-3; for other parameters, we
use an initial learning rate of 1e-1, which drops by a factor
of 10 respectively after 80 and 120 epochs. For inputs of
PartNet and image-level models, we pre-process each image
by resizing its shorter size to 448 while keeping the aspect
ratio unchanged. Then we crop a random 448 × 448 region
for the use of training (we also use the horizontal flip version
of the cropped 448× 448 region for data augmentation) and a
central 448× 448 region for the use of testing. The part-level
models are obtained by fine-tuning the image-level model with
the detected part proposals, which are rescaled to the size of
448 × 448 as inputs. All our experiments are based on the
above training settings.

https://github.com/YBZh/PartNet
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Based on models constructed from VGGNet, we report the
time to train the models and to label a new sample on Tesla
M40 GPUs. Taking the CUB-200-2011 dataset as an example,
it takes 19.4, 66.8 and 89.8 GPU hours to train the image-level
model, PartNet, and each part-level model respectively. Thus,
the whole training time of our method is 355.6 GPU hours,
and the model training can be finished in 176 GPU hours
considering that the three part-level models can be trained in
parallel. It takes 32 ms, 71 ms and 32 ms to label a new
sample by image-level model, PartNet, and each part-level
model respectively. Thus the prediction of a new sample by
the PartNet-Full can be finished in 103 ms considering that
predictions of the image-level model and PartNet can be made
in parallel, and the same applies to predictions of the three
part-level models. The number of parameters of PartNet (58.63
M) is about 41% of those of the original VGGNet model
(about 144 M), confirming the efficiency of our proposed
method.

B. Ablation Studies on the Detection Stream

The detection stream is the key component in PartNet. We
evaluate its effectiveness on the CUB-200-2011 dataset using
a PartNet constructed from Dilated ResNet-34.

The detection stream detects discriminative local parts es-
sentially by learning to assign varying weights to different
region proposals. To evaluate its effectiveness, we remove the
detection stream of PartNet and correspondingly set scores of
detection probabilities for different region proposals as being
equal (i.e., setting elements of S′det in Eq. (4) as 1

R ). We
term such a model as Degenerate PartNet. Table II compares
results of PartNet, Degenerate PartNet, and also the baseline
Dilated ResNet-34, where region proposals are generated by
SS [27]. Dilated ResNet-34 performs fine-grained categoriza-
tion directly on the image level, and its result is worse than that
of Degenerate PartNet, showing the benefit of performing fine-
grained categorization on the region level. This is consistent
with observations in [20], [22]. By learning and assigning
varying weights to different region proposals, our proposed
PartNet further improves the result. Discriminative local parts
can also be detected from region proposals by ranking these
weights, which will be presented shortly.

TABLE II
COMPARATIVE EXPERIMENTS ON THE CUB-200-2011 DATASET [2]

WITH OR WITHOUT THE DETECTION STREAM IN THE PARTNET, WHICH
IS CONSTRUCTED FROM THE BASELINE OF DILATED RESNET-34.

Method Proposal Method Accuracy (%))
Dilated Resnet-34 NA 82.02
Degenerate PartNet SS 82.84
PartNet SS 83.53

For the detection stream of PartNet, we need to specify the
number P of output neurons of the second FC layer, which
is also the specified number of part detectors. To investigate
how different values of P influence classification performance,
we conduct experiments on the CUB-200-2011 dataset by
setting P = 1, 3, 5, and 10. Results in Table III show that
classification accuracy slightly improves as more part detectors

are used, but at the price of increased computation cost. In our
experiments, we set P = 3 for a balance between accuracy
and efficiency.

TABLE III
CLASSIFICATION PERFORMANCE ON THE CUB-200-2011 DATASET [2]

WHEN USING DIFFERENT NUMBERS OF PART DETECTORS (I.E., P
VALUES IN EQ. (2)) IN THE DETECTION STREAM OF PARTNET. THE

PARTNET IS CONSTRUCTED FROM DILATED RESNET-34.

No. of Part Detectors 1 3 5 10
Accuracy (%) 83.51 83.53 83.62 83.63

C. Ablation Studies on DPP

We investigate our proposed DPP method by conducting
experiments on the CUB-200-2011 dataset using a PartNet
constructed from Dilated ResNet-34.

The number of proposals generated by DPP for each image
may influence the performance of PartNet. To investigate, we
first generate a number K = 28 of boxes for each spatial
cell of feature maps (cf. Table I in Section III-B for how
sizes and aspect ratios of the boxes are specified); we then
rank the 28 boxes associated with each cell according to
their sizes/areas, and uniformly sample 3, 7, and 14 ones
out of them respectively. This creates scenarios of generating
K = 3, 7, 14, 28 boxes per spatial cell for our proposed DPP.
Results in Table IV show that classification accuracies slightly
improve as more proposals are used. In our experiments, we
by default set K = 28 for each spatial cell of feature maps.

TABLE IV
EFFECT OF DIFFERENT NUMBERS OF PROPOSALS WHEN USING OUR
PROPOSED DPP FOR FINE-GRAINED CATEGORIZATION. EXPERIMENTS

ARE CONDUCTED ON THE CUB-200-2011 DATASET [2] USING A
PARTNET CONSTRUCTED FROM DILATED RESNET-34.

No. of Proposals per Cell K = 3 K = 7 K = 14 K = 28
Accuracy (%) 84.31 84.41 84.36 84.43

We also compare with other region proposal methods used
in recent fine-grained categorization works [14], [20], includ-
ing SS [27] and an improved version of SS termed Filtered SS.
Filtered SS removes noisy proposals that are irrelevant to the
objects of interest in an image (e.g., those on the background)
by an object-level attention model [20], and it thus enjoys an
unfair advantage over both SS and our proposed DPP. For
both SS and Filtered SS, we use the same number of region
proposals as our DPP does: when these methods produce
more proposals, we rank them in terms of areas of proposed
regions, and then uniformly sample the same number of region
proposals; in some rare case that these methods produce fewer
proposals, we also duplicate some ones. Results in Table V
show that our DPP method outperforms both SS and Filtered
SS, confirming that candidates of discriminative local parts
can be sampled directly at salient positions of feature maps,
with no need to be bridged via object-level proposals.

D. Ablation Studies on Variants of PartNet

Our first PartNet variant is analysed with ResNet-34 and
Dilated ResNet-34 models. The Dilated ResNet-34 model
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TABLE V
CLASSIFICATION ACCURACIES (%) OF PARTNET ON THE CUB-200-2011
DATASET [2] WHEN USING DIFFERENT METHODS TO GENERATE REGION

PROPOSALS.

Method SS [27] Filtered SS [20] DPP
Accuracy (%) 83.53 84.00 84.43

TABLE VI
EFFECT OF RESOLUTION OF FEATURE MAPS TO FINE-GRAINED

CATEGORIZATION TASKS. THE DILATED RESNET-34 PRODUCES
DOUBLED FEATURE MAP RESOLUTION OVER THAT OF RESNET-34.

EXPERIMENTS ARE CONDUCTED ON THE CUB-200-2011 DATASET [2].

ImageNet Method Acc. (%)
Pre-training

No ResNet-34 54.44
No Dilated ResNet-34 60.95
Yes ResNet-34 81.78
Yes Dilated ResNet-34 82.02
Yes PartNet constructed from ResNet-34 82.98
Yes PartNet constructed from Dilated ResNet-34 84.36

uses 2-dilated convolution [38] to double the resolution of
feature maps without affecting the size of the receptive field.
To investigate the effect of feature map resolution itself for
fine-grained categorization, we first use the baseline model
of ResNet-34, which is either pre-trained on the ImageNet
or trained from scratch on the CUB-200-2011 dataset. Since
ResNet-34 produces feature maps whose resolution is only
half of that of feature maps produced by Dilated ResNet-34,
our DPP method cannot generate K = 28 per-cell proposals
for ResNet-34. We thus set K = 14 in this comparative
experiment. Results in Table VI show that for both of the
considered training settings (i.e., with or without ImageNet
pre-training), higher resolution of feature maps contributes
to better classification accuracies, showing its usefulness in
fine-grained categorization by preserving finer details of ap-
pearance features. When applying dilated convolution to our
proposed PartNet (constructed from ResNet-34), performance
gets a clear boost as well.

Our second PartNet variant enforces weight matrix of the
second FC layer in the classification stream to be orthogonal,
by using the SVB technique proposed in [40]. To investigate its
effectiveness, we again conduct experiments on the CUB-200-
2011 dataset using PartNet constructed from Dilated ResNet-
34. Results in Table VII show that this variant achieves im-
proved classification performance. Note that results of PartNet
and PartNet-Full reported in Sections IV-E and IV-F are based
on this variant.

TABLE VII
RESULTS OF PARTNET ON THE CUB-200-2011 DATASET [2] WITH OR
WITHOUT USING WEIGHT ORTHOGONALIZATION FOR THE SECOND FC

LAYER OF THE CLASSIFICATION STREAM.

Weight Orthogonalization Method Accuracy (%)
No PartNet 84.43
Yes PartNet 84.73

Fig. 6. Some failure results of part detection. Images of “Bird”, “Cat”, and
“Flower” are from CUB-200-2011 [2], Oxford-IIIT Pet [5], and Oxford Flower
102 [6] datasets, respectively.

E. Ensemble of PartNet with Its Associated Image- and Part-
level Models

We introduce in Section IV-A that PartNet is constructed
from an image-level base model, and multiple part-level mod-
els can also be obtained by fine-tuning the image-level model
with the region proposals respectively detected by the learned
part detectors of PartNet. PartNet contributes to fine-grained
categorization by aggregating local discriminative evidence
provided by part detectors. Complementary to PartNet, image-
and part-level models may respectively provide their own
discrimination by emphasizing either the holistic image or
each of the individual parts. It is arguably beneficial to use
an ensemble of these models to further boost classification
performance. Empirical success of similar model ensemble is
also presented in [22], [23], [19].

For model ensemble in this section, we use the VGGNet
based PartNet with the two variants introduced in Section
III-C. Table VIII shows results of individual models and
various model combinations of the ensemble. We can observe
that:
• Classification accuracies of the individual part-level mod-

els are relatively low, which may be attributed to the
relatively less information contained in individual parts,
and also the occasional failure of part detection. Figure 6
shows two main reasons (i.e., complex background and
heavy occlusion) causing the failure of part detection.
However, averaging the predictions of three part-level
models boosts the accuracy by a large margin, proving
that the detected three part-level regions are complemen-
tary with each other.

• Averaging the classification probabilities of image- and
part-level models achieves large performance improve-
ments (e.g., 3.92%, 1.35%, and 1.44% on the datasets
of CUB-200-2011, Oxford Flower 102, and Oxford-IIIT
Pet respectively) over the results of using the image-level
models alone, justifying the complementarity of holistic
image and individual parts.

• Combining PartNet, image-level, and part-level models
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TABLE VIII
CLASSIFICATION ACCURACIES (%) OF INDIVIDUAL MODELS AND VARIOUS MODEL COMBINATIONS OF PARTNET WITH ITS ASSOCIATED IMAGE- AND

PART-LEVEL MODELS ON THE CUB-200-2011 [2], OXFORD FLOWER 102 [6] AND OXFORD-IIIT PET [5] DATASETS. THE VGGNET IS USED TO
EXTRACT FEATURES IN ALL THE EXPERIMENTS IN THIS TABLE AND THE SYMBOL ”+” MEANS AVERAGING THE CLASSIFICATION PROBABILITIES OF

CORRESPONDING MODELS.

Method CUB-200-2011 [2] Oxford Flower 102 [6] Oxford-IIIT Pet [5]
Image-level 82.19 95.12 92.07

PartNet 85.11 95.95 92.56
Part 1 78.51 92.79 76.97
Part 2 75.68 93.30 83.78
Part 3 77.55 91.12 81.71

Part 1 + 2 + 3 83.64 95.82 88.39
Part 1 + 2 + 3 + Image-level 86.11 96.47 93.51

Image-level + PartNet 83.98 95.62 92.80
Part 1 + 2 + 3 + PartNet 86.19 96.43 92.53

Our PartNet-Full 86.90 96.70 95.37(Part 1 + 2 + 3 + PartNet + Image-level)

TABLE IX
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE CUB-200-2011 [2] DATASET.

Method Training annotation Test annotation CNN Features Accuracy (%)
VGG-BGLm [43] BBox BBox VGGNet 80.40
PG Alignment [44] BBox – VGGNet 82.00
Coase-to-Fine [45] BBox – VGGNet 82.50
PG Alignment [44] BBox BBox VGGNet 82.80
Coase-to-Fine [45] BBox BBox VGGNet 82.90
PBC [46] BBox – GoogleNet 83.30
FCAN [47] BBox BBox ResNet-50 84.70
Part-based RCNN [14] BBox + Parts – AlexNet 73.90
PBC [46] BBox + Parts BBox GoogleNet 83.70
DPS-CNN [48] Parts – GoogleNet 85.12
SPDA [16] BBox + parts BBox VGGNet 85.14
Zhang et al. [15] Parts – VGGNet 85.92
HSnet [29] Parts – GoogleNet 87.50

Two-level Attention [20] – – AlexNet 69.70
VGG-BGLm [43] – – VGGNet 75.90
DVAN [18] – – VGGNet 79.00
Zhang et al. [21] – – VGGNet 79.34
NAC [49] – – VGGNet 81.01
STN [50] – – GoogleNet 84.10
Bilinear-CNN [51] – – VGGNet 84.10
FCAN [47] – – ResNet-50 84.30
PDFS [24] – – VGGNet 84.54
PNA [25] – – VGGNet 84.70
RA-CNN [19] – – VGGNet 85.30
MA-CNN (2 parts + object) [23] – – VGGNet 85.40
OPAM [22] – – VGGNet 85.83
DT-RAM [52] – – ResNet-50 86.00
MA-CNN (4 parts + object) [23] – – VGGNet 86.50
Our PartNet-Full – – VGGNet 86.90
Our PartNet-Full – – ResNet-34 87.30

further boosts classification performance on the three
datasets, certifying the effectiveness of our proposed
method.

F. Comparison with State-of-the-art Methods

We compare our PartNet with the state-of-the-art methods
on the benchmark datasets of CUB-200-2011 [2], Oxford
Flower 102 [6] and Oxford-IIIT Pet [5]. Table IX presents
comparison results on the CUB-200-2011 dataset. The types
of annotation used in the training and test stages of each
method are also listed in the table, where “CNN Features”
indicates which (base) network is used to extract features in
each method.

TABLE X
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE OXFORD

FLOWER 102 [6] DATASET.

Method CNN Features Accuracy (%)
MPP [53] AlexNet 91.28
Magnet [54] GoogleNet 91.40
BoSP [26] VGGNet 94.02
NAC [49] VGGNet 95.34
PBC [46] GoogleNet 96.10
OPAM [22] VGGNet 97.10
Our PartNet-Full VGGNet 96.70

When constructing the PartNet using the VGGNet (with
the two variants introduced in Section III-C), our PartNet-
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(a) Birds

(b) Flowers (c) Pets

Fig. 7. Visualization of the detected parts on datasets of CUB-200-2011 [2], Oxford Flower 102 [6] and Oxford-IIIT Pet [5]. The first row denotes the
original images, and the second, third, and fourth rows denote the parts detected by the three part detectors respectively. The last row denotes the background
or less discriminative proposals detected by the background detector. Results are obtained by the PartNet constructed from the VGGNet with the two variants
introduced in Section III-C. The images in (a) Birds, (b) Flowers and (c) Pets are from the test data of CUB-200-2011 [2], Oxford Flower 102 [6] and
Oxford-IIIT Pet [5] datasets respectively.

Full (i.e., the ensemble model described in Section IV-E)
obtains the new state-of-the-art result on the CUB-200-2011
dataset when neither object nor part annotations are used.
Furthermore, our method outperforms most of the existing

ones that need part or object annotations, such as [16], [15],
[48], [14]. When constructing the PartNet using the base
network of Dilated ResNet-34, our PartNet-Full obtains an
even better result on the CUB-200-2011 dataset.
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TABLE XI
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE

OXFORD-IIIT PET [5] DATASET.

Method CNN Features Accuracy (%)
NAC [49] VGGNet 91.60
Two-level Attention [20] VGGNet 92.51
OPAM [22] VGGNet 93.81
Our PartNet-Full VGGNet 95.37

Note that the state-of-the-art method HSnet [29] uses the
ground-truth part annotations in the training stage, making it
less relevant to compare directly with our proposed method.
Our PartNet-Full combines multi-level models for final pre-
diction by simply averaging the classification probabilities of
these models. In contrast, the MA-CNN [23] trains a classifier
based on the concatenated features of multi-level models,
and OPAM [22] learns a weight for each model with the
computationally expensive k-fold cross-validation method, yet
their results are still worse than ours.

We present our result on the Oxford Flower 102 dataset in
Table X. Our PartNet-Full obtains the result that is comparable
with state-of-the-art method [22].

We also present our result on the Oxford-IIIT Pet dataset
in Table XI. Our PartNet-Full obtains the new state-of-the-art
result, justifying the efficacy of our PartNet.

G. Part Detection Visualization
In Figure 7, we visualize the detected discriminative parts by

the VGGNet based PartNet (with the two variants introduced
in Section III-C), where images are from test data of the CUB-
200-2011 [2], Oxford Flower 102 [6] and Oxford-IIIT Pet
datasets. We observe in Figure 7 that our detected local parts
have physical meanings:
• For the bird dataset, the first two parts (Part 1 and Part

2) are on local regions of bird head, with the second one
being a slightly zoomed-in version of the first one, and
the third part (Part 3) is on local regions of bird body
(back and/or abdomen).

• For the flower dataset, the three parts are roughly on local
regions of a flower or some of its petals, regardless of how
many flowers are contained in each of the images.

• For the pet dataset, the first part (Part 1) and the third
part (Part 3) are on local regions of pet head, with the
first one being a slightly zoomed-in version of the third
one, and the second part (Part 2) is on local regions of
pet body.

These detected local parts arguably provide semantically dis-
criminative information for fine-grained categorization. Figure
7 also shows that the background detector gathers region
proposals that are on the image background and are thus less
relevant to the task of interest. The influence of background
proposals for image category prediction can thus be decreased
by removing the background detector before combining the
two streams (cf. Section III-A3).

V. CONCLUSIONS

In this paper, we propose a novel Weakly Supervised
Part Detection Network (PartNet) for part-aware fine-grained

object categorization. Our PartNet contains two streams: the
classification stream classifies part-level region proposals over
subordinate categories; the detection stream selects discrimina-
tive proposals for the use of fine-grained object categorization.
The image-level classification is obtained by the combination
of region-level probabilities of the two streams, and mean-
while diverse part detectors can be learned in an end-to-end
fashion under the image-level supervision. To prepare part-
level region proposals for the PartNet, we design a simple
Discretized Part Proposals method that utilizes the localization
information in the feature maps directly. Experiments on the
benchmark datasets of CUB-200-2011 [2], Oxford Flower
102 [6] and Oxford-IIIT Pet [5] demonstrate the efficacy
of our proposed PartNet on fine-grained categorization and
salient part detection. Especially our approach obtains the
new state-of-the-art result on the CUB-200-2011 and Oxford-
IIIT Pet datasets when ground-truth part annotations are not
available. We believe that such methods, that only need image
categorization level supervision are important for new fine-
grained categorization tasks.
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