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Abstract
This paper proposes a deep cascade network to
generate 3D geometry of an object on a point
cloud, consisting of a set of permutation-insensitive
points. Such a surface representation is easy
to learn from, but inhibits exploiting rich low-
dimensional topological manifolds of the objec-
t shape due to lack of geometric connectivity. For
benefiting from its simple structure yet utilizing
rich neighborhood information across points, this
paper proposes a two-stage cascade model on point
sets. Specifically, our method adopts the state-of-
the-art point set autoencoder to generate a sparsely
coarse shape first, and then locally refines it by en-
coding neighborhood connectivity on a graph rep-
resentation. An ensemble of sparse refined sur-
face is designed to alleviate the suffering from lo-
cal minima caused by modeling complex geomet-
ric manifolds. Moreover, our model develops a
dynamically-weighted loss function for jointly pe-
nalizing the generation output of cascade levels at
different training stages in a coarse-to-fine man-
ner. Comparative evaluation on the publicly bench-
marking ShapeNet dataset demonstrates superior
performance of the proposed model to the state-of-
the-art methods on both single-view shape recon-
struction and shape autoencoding applications.

1 Introduction
3D geometry of an object is a vital property in a number
of applications such as computer vision [Simon et al., 2018;
Bronstein et al., 2017] and graphics [Kazhdan et al., 2006],
making representation learning to generate a high-resolution
surface active and hot. In the era of deep learning since
2012, Euclidean convolution operation has gained significant
progress on feature encoding for regularly sampled data such
as images [He et al., 2016; Huang et al., 2017] or videos
[Karpathy et al., 2014]. In 3D computer vision, volumetric
voxels are the first attempt for surface generation [Choy et
al., 2016], owing to direct application of 3D Euclidean con-
volutional operation on discretized regular grids. Although

∗Corresponding author

Figure 1: Point surface generation from single images with the pro-
posed deep cascade generation (DCG) network and the state-of-the-
art AtlasNet. We adopt the AtlasNet as the autoencoder of the first
cascade level in our DCG net. For a fair comparison, (b) the At-
lasNet and (d) the DCG have the identical size of points in their
final point cloud representation. The values of the Chamfer distance
(cd) in (b) and (d) indicate the errors between point predictions and
ground truth point clouds illustrated in (a). Point cloud samples are
from the popular ShapeNet benchmark.

existing deep learning methods [Choy et al., 2016; Girdhar
et al., 2016; Tatarchenko et al., 2017; Tulsiani et al., 2017;
Yan et al., 2016; Tatarchenko et al., 2016] based on a voxel
representation achieve competitive generation performance,
they still suffer from inherent drawbacks of surface represen-
tation, i.e., voxel-wise information sparsity, which thus lead-
s to expensive memory cost O(h3) proportional to cubic of
voxels’ dimension h.

A point cloud providing on-surface details is a powerful
parametric shape representation, which can alleviate 3D da-
ta occupancy sparsity in the rasterized representation. Nev-
ertheless, Euclidean convolution based deep networks can-
not be applied to point set generation in view of irregular
structure of points, which encourages a number of deep algo-
rithms to regress points’ 3D position directly, e.g., point set
generation (PSG) [Fan et al., 2017] and AtlasNet [Groueix
et al., 2018]. These methods are designed in an encoder-
decoder structure, reconstructing a collection of points from a
latent feature vector encoded from input data, which achieve
state-of-the-art generation performance and computational
efficiency. In surface generation, a point cloud representa-
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tion favors for its simplicity to learn from, with the price
of missing points’ neighborhood information, which pre-
serves low-dimensional manifolds of shape. Point-wise cor-
relation has been verified as an important property of shape
in 3D recognition, e.g., DGCNN [Wang et al., 2018b] and
SO-Net [Li et al., 2018]. Recently, an alternative paramet-
ric representation – a triangle mesh [Groueix et al., 2018;
Wang et al., 2018a] can incorporate the underlying manifold
structure of a surface, but suffers from irregular and complex
combinatorial relation and thus is made challenging in the
perspective of model learning.

A simple and flexible representative structure and rich lo-
cal neighborhood information are both desired properties for
shape reconstruction and autoencoding. For both advantages,
we design a deep cascade model of two encoder-decoders,
which aim to firstly generating a coarse surface and then lo-
cally refining 3D shape via feature encoding on its graph rep-
resentation respectively. Specifically, the former one repli-
cates the network structure as the state-of-the-art competitors
(e.g., the AtlasNet [Groueix et al., 2018] in our experiments),
while the latter one concerns on point set reconstruction on
feature encoding of local connectivity, which first constructs
a k-NN graph on the generated surface in the first stage and
discovers correlation between neighboring points via graph
convolution as the DGCNN [Wang et al., 2018b]. Simply
put, our method adopts simple point clouds to represent ob-
ject shape and designs a stack of autoencoders to mine point-
wise dependency. Figure 1 illustrates the key difference be-
tween our direct competitor – the AtlasNet [Groueix et al.,
2018] and the proposed DCG network, with visualizing re-
sults of some testing examples in our experiments.

2 Related work

Learning to Generate 3D Surface. A number of algo-
rithms have been proposed for generating 3D surface of ob-
ject shape from single images [Choy et al., 2016; Girdhar
et al., 2016; Yan et al., 2016; Tatarchenko et al., 2017;
Tulsiani et al., 2017], image sequences [Choy et al., 2016;
Kar et al., 2017], point sets [Fan et al., 2017; Groueix et
al., 2018], or depth images [Yang et al., 2017], which can
be categorized into two categories dependent on using vol-
umetric voxels or non-Euclidean parametric surface repre-
sentations. On one hand, with a volumetric shape repre-
sentation, supervised deep learning based algorithms [Choy
et al., 2016; Girdhar et al., 2016; Tatarchenko et al., 2017;
Tulsiani et al., 2017; Yan et al., 2016; Tatarchenko et al.,
2016] for 3D shape reconstruction have been developed based
on 3D Euclidean convolutional encoding and decoding a-
long regularized grids. These volumetric CNNs designed
in an encoder-decoder structure focused on either extracting
good latent vector via inter-modality feature fusion [Gird-
har et al., 2016] and view-wise correlation mining [Choy
et al., 2016], or alleviating the inherent occupancy sparsi-
ty problemby replacing voxels with computationally efficient
alternatives such as octree [Tatarchenko et al., 2017], RGB-
D [Tatarchenko et al., 2016] or multi-view images [Yan et
al., 2016]. On the other hand, a non-Euclidean paramet-
ric representation such as point clouds [Fan et al., 2017;

Groueix et al., 2018] and meshes [Wang et al., 2018a;
Pan et al., 2018; Tang et al., 2019] can be considered a pow-
erful alternative, which avoids occupancy sparsity in the vol-
umetric shape representation but the problem of operating a
convolution on non-Euclidean data arises accordingly. The
first pioneering work to generate a point-based surface with a
deep net is the Point Set Generation (PSG) Network [Fan et
al., 2017], which encodes a single image into a latent vector
to regress points’ positions directly. Because of missing local
connection in the representation, generated points’ positions
in the PSG net have a large variation when direct recovery
of the object surface, which encourages Pixel2mesh [Wang
et al., 2018a] to regularize 3D shape by favoring for losses
to enforce local smooth manifold structure. Most relevant to
our work is the AtlasNet [Groueix et al., 2018], which gen-
erates a point cloud representation of a surface via learning
a regression mapping between encoded feature vectors from
input data and surface parameters (points’ positions) of 3D
shape. The key difference between our method and the Atlas-
Net lies in two folds. First, our method favors for hierarchical
coarse-to-fine learning in a cascade structure, while the Atlas-
Net has one stage to generate a parametric surface based on
patches. Second, the AtlasNet learns implicitly to incorporate
local connection between points via learning a mapping be-
tween vectors encoding shape and points’ positions to its sur-
face parameters. Beyond implicit feature encoding as the At-
lasNet, our method also explicitly adopts graph convolution
on non-Euclidean data inspired by [Bronstein et al., 2017;
Wang et al., 2018b]. Experimental evaluation in Sec. 4.2
verifies superior efficacy of the proposed Deep Cascade Gen-
eration (DCG) to other competitors.

Geometric Deep Learning on Point Sets. Recently, a
number of geometric deep learning methods are designed on
non-Euclidean data especially point clouds. As pioneering
works, the PointNet [Qi et al., 2017a] and the Pointnet++ [Qi
et al., 2017b] start the trend of implementing deep learning
on unordered point sets. The permutation invariance of point
clouds is encoded by point-wise manipulation and a sym-
metric function for accumulating features, but failing to ex-
ploit point-wise connectivity. Recent progress on geometric
deep learning such as spectral networks [Bruna et al., 2013;
Defferrard et al., 2016; Kipf and Welling, 2016] and dynamic
graph CNN (DGCNN) [Wang et al., 2018b] inspire us to en-
code additional local connection into a feature vector, which
provides low-dimensional manifold information to regularize
surface parameterization. Our motivation is verified in Tables
1, 2, and 3.

Contributions. The novelties of our method are as follows.

• We develop a novel deep cascade learning to progres-
sively evolves from coarse to fine point clouds, which
can explicitly encodes their neighborhood information
to locally refine point-based shape.

• An ensemble of refined point sets to construct a dense
surface avoids local minima caused by complex combi-
natorial irregularities when exploiting point-wise corre-
lation and also reduces computational costs, compared
to directly generating a dense surface.
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Figure 2: Pipeline of the proposed DCG Net consisting of two cascade stages – coarse shape generation and shape refinement. The former
adopts the state-of-the-art AtlasNet, while the latter adopts graph convolution based encoding and an ensemble of decoders.

• A novel loss is designed to dynamically adjusting
weights between losses on coarse and fine point clouds,
which in principle enforces network optimization from
losses on the output of cascade levels at different train-
ing stages.
• Our method significantly outperforms the state-of-the-

art PSG [Fan et al., 2017] and Atlasnet [Groueix et al.,
2018] on the public Shapenet benchmark on both single-
view shape reconstruction and autoencoding tasks.

Source codes of our DCG method are available1.

3 Methodology
We first formulate the surface generation problem on a para-
metric representation, i.e. a point cloud, into learning a map-
ping function F (·) from the input data X to the ground-truth
surface S . On point sets, the ground truth surface S can be
approximated by a point cloud representation P∗. The object
function of point set generation can thus be written as

min L(F (X )− P∗)
where L(·) is the loss function. In the existing methods [Fan
et al., 2017; Groueix et al., 2018] for generating a point-based
shape, an encoder-decoder structure is popular. In details,
F (·) can be decomposed into an encoder E(·) and a decoder
D(·), i.e., F (X ) = D(E(X )). Intuitively, the encoder E(·)
encodes input data into a latent vector θ which is then decod-
ed into 3D geometry to approximate P∗.

In this section, we present the deep cascade generation
(DCG) network on point sets, which consists of end-to-end
trainable autoencoders. For generality, we define a cascade
network with L stages, the l-th of which generates a point
cloud representation Pl, l = 1, 2, . . . , L. In the first cascade
level, P1 can be generated via the following equation:

P1 = F1(X ),

while, in the remaining cascade levels (l > 2) for point set
reconstruction,

Pl = Dl([Pl−1,Hl(Pl−1), θ1])

1https://wkqscut.github.io/DCGNet/.

Figure 3: Network structure of the encoder-decoder in the first cas-
cade stage following the state-of-the-art AtlasNet.

where Dl is a stack of decoders at stage l for generating 3d
points; Pl−1 denotes point sets to be refined (the purple arrow
in Figure 2); Hl is a shape encoder on graph representation
of Pl−1 at the l-th stage to discover local correlation (the red
arrow in Figure 2); θ1 is the latent vector encoded in the first
stage to represent a global feature on generating a coarse sur-
face (the blue arrow in Figure 2).

For simplifying the network structure, we evaluate our
deep cascade generation network with two cascade stages,
one for generating a sparsely coarse shape (highlighted in a
blue rectangle) and the other for shape refinement (highlight-
ed in a green rectangle). We adopt the state-of-the-art Atlas-
Net [Groueix et al., 2018] as the autoencoder in the first stage
(see Sec. 3.1) and design the cascade structure and other fac-
tors favorable for coarse-to-fine point set generation. Specifi-
cally, there are three key components in our DCG net.
• Graph construction and feature encoding in the shape re-

finement stage to incorporate local connection of points
(Sec. 3.2).
• An ensemble of refined parametric point sets to avoid

local minima (Sec. 3.3).
• A dynamic loss function for enforcing the training pro-

cedure in a coarse-to-fine fashion (Sec. 3.4).

3.1 AtlasNet based Coarse Surface Generation
We adopt recent AtlasNet [Groueix et al., 2018] to generate
the coarse surface to be refined owing to its strong perfor-
mance and efficiency. Figure 3 illustrates the deep structure
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Figure 4: Net structure of a densely-connected graph encoder.

of the AtlasNet, which contains an encoder and n (e.g., five
in our experiments) multi-layer perceptron (MLP) decoders,
each of which with four fully connected layers aims to predict
a parametric surface patch locally. We follow the settings in
[Groueix et al., 2018] for point set generation and shape au-
toencoding, i.e., ResNet-18 [He et al., 2016] and PointNet [Qi
et al., 2017a] for feature encoding on images or point clouds
respectively. Specifically, the ResNet-18 contains four resid-
ual blocks followed by one fully-connected layer, and each
block consists of five 2D convolution layers, while the Point-
Net has four layers with three 1D convolution layers and one
fully-connected layer. Inspired by the FoldingNet [Yang et
al., 2018], we use tiled N -dimensional 2D fixed grid points
as 2D primitives during reconstruction rather than 2D points
via uniformly random sampling, which together with the la-
tent vector encoded by either ResNet-18 or PointNet are fed
into the decoder as an input. The output dimension of hid-
den layers in each MLP based decoder is fixed to [1024, 512,
256, 3] followed by ReLU non-linearity operation. Finally,
the output of the AtlasNet is a collection of N × n 3D points
to represent a coarse surface of 3D object shape.

3.2 Graph Convolutional Encoding
Our motivation to exploit point-wise connectivity in a point
cloud representation can be achieved via designing novel
densely-connected MLPs (see Figure 4) on the predicted
point set from the early cascade stage. We first extract a C-
dimensional (C = 24) feature for each 3D point via one MLP
layer, which contains one 1D convolution layer. A k nearest
neighbor (k-NN) graph G = {V, E} in RC containing N × n
vertices V = {v1,. . . ,vN×n} and E ⊆ V x V is constructed
from an unstructured point feature set. We employ the edge
convolution [Wang et al., 2018b] on such a k-NN graph. If
there exists an edge eij connecting a vertex vi and its neigh-
bor vertex vj , we get an edge feature gij by applying a non-
linear function h{·, ·} with learnable parameters Θ on vertex
vi and edge eij . As a result, each vertex having k nearest
neighbors will generate a P -dimensional feature as follows:

v′i =
∑

j∈N (i)

hΘ(vi ‖ vj − vi) ∈ RP ,

where hΘ denotes a MLP mapping and N (i) is a set of local
neighbors’ indexes around vertex vi. Inspired by the densely
connected networks [Huang et al., 2017], the output of the
graph convolution (the blue block in Figure 4) is fed into three
2D MLPs having 2D convolution layers with growth rate P

= 12, whose layers are densely connected as Figure 4 shows.
The output layer of such an encoder is a graph max pooling
layer to take the maximum among the k vertex neighbors.

3.3 An Ensemble of Point Decoders
As shown in Figure 2, we employ a stack of decoders for a
densely fine point-based surface, encouraged by the Point-
Net++ [Qi et al., 2017b] for 3D shape analysis in a hierarchi-
cal learning fashion. Specifically, given a coarse surface Pl−1
as an input, the surface output of the autoencoder at cascade
level l is ∪Dm

l , where m is the size of point generators based
on multi-layer perceptrons. We use the same network struc-
ture of the MLP in the AtlasNet, i.e. four 1D convolution
layers with [1024, 512, 256, 3] hidden neurons respective-
ly. Moreover, We apply residual skip-connections between
two adjacent cascade levels, which ensures that the position-
s of coarser points can be propagated and updated through
the entire network and incorporated for fine surface genera-
tion. Evidently, the size of points in such an ensemble learn-
ing manner is linearly proportional to the size m of stacked
decoders, and thus evolves more dense surface with cascade
levels l increases. For a fair evaluation in our experiments, we
employ the identical shape representation at the final cascade
level as comparative methods, which reduces the size of MLP
in the coarse shape generation from twenty-five in [Groueix
et al., 2018] to five in our experiments. Consequently, learn-
ing parameters of decoders in original AtlasNet are reduced
significantly (58.9% as shown in Table 1). Experiment result-
s in Sec. 3.3 verify consistently a moderate improvement on
generation performance by an ensemble of refined point sets.

3.4 A Dynamic Loss for Network Optimization
We strive for optimizing predicted shape PL from the final
cascade stage by minimizing the objective function as:

min L(P1,P2, . . . ,PL,P∗)

which can be decomposed into loss functions on predicted
surface Pl at level l and the ground truth point cloud P∗ as

min
L∑
l

wlL(l)(Pl,P∗)

where wl is the weight for the l-th loss L(l). Such a weighted
loss connected with point predictions of the hidden and out-
put layers are popular in recent deep learning methods [Yuan
et al., 2018; Huang et al., 2017], therefore we design a dy-
namically weighting strategy to enforce coarse-to-fine net-
work optimization with training time evolving, which shares
similar concept as exponential decay on adjusting learning
rate. Specifically, in our two-stage cascade model (L = 2),
the weights w1 and w2 for their corresponding losses are as

w1 = α = e−λk ∈ (0, 1]; w2 = 1− α;

where k is the current number of iterations during training,
λ is the decay rate of w1, and α is the trade-off parameter
between losses. In our experiments, we adopt the Chamfer
distance (cd) for L(l), l = 1, 2 with more details given in Sec.
4.1.
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Methods CD ↓ HD ↓ F1 ↑ Dec. Params
PSG 4.83 2.20 48.30 –
AtlasNet 4.64 2.03 47.51 4.29
DCG wo/Graph (ours) 4.26 1.85 60.31 1.72
DCG (ours) 4.09 1.88 60.56 1.76

Table 1: Comparative evaluation on single-view reconstruction with
2500 predicted points. The Chamfer distance (CD) is in units of 103.
The Hausdorff distance (HD) is in units of 10. For F1-score (F1),
we use a threshold τ = 1e − 3. Parameter size of decoders (Dec.
Params) is in units of 107.

With such an exponential-decay weighted loss, coarse-to-
fine network training can be achieved. During training, the
dynamic loss has higher weights for generating a sparsely
coarse surface at the early stage in view of reducing diffi-
culties of direct mapping to dense surface. Moreover, a good
coarse shape as an initial state can further make shape re-
finement simpler. Increasing weights for the fine surface in
the following cascade stage leads to progressively generating
shape details when training procedure evolves. In Table 4, we
report experimental results to compare the proposed dynamic
loss with other settings of the loss function, which verify our
motivation to dynamically adjusting weights between losses.

3.5 Implementation Details
For simplicity, we use an identical MLP containing four fully-
connected layers with channels 1024, 512, 256 and 3 respec-
tively. All layers except the final one have a composite block
of consecutive operations includes convolution, batch nor-
malization, and ReLU non-linearity, while the tanh is then
applied to the final layer (refer to network visualization in
Figure 3). We then present details about end-to-end network
optimization. As shown in Figure 2, our DCG net training
takes input data (images for single-view shape reconstruction
and point clouds for shape autoencoding) and ground truth
point cloud representations for model training. In single-view
shape reconstruction, each training image with size 137×137
is randomly cropped to size 127× 127 for data augmentation
and then resized to 224× 224 before feeding into the feature
encoder at the cascade level 1. All the point clouds sampled
from CAD models are normalized into a unit sphere. We used
the ADAM to train the model for a total of 420 epochs with
an initial learning rate of 0.001 and batch size 32. For step
decay on the learning rate, it is dropped by a factor of 0.1
after 300 and 400 epochs.

4 Experiments
4.1 Settings

Dataset. We conduct experiments on the popular ShapeNet
Core dataset (v2) [Chang et al., 2015], which has been wide-
ly adopted in 3D shape reconstruction [Choy et al., 2016;
Fan et al., 2017; Groueix et al., 2018] and autoencoding
[Yang et al., 2018]. It contains 39689 CAD models belong-
ing to 13 categories, which range from 1K to 10K samples.
30000 points are uniformly sampled from CAD models as

Figure 5: Single-view shape reconstruction comparison from an in-
put image. (a) to generate a point cloud representation, (b) by PSG,
(c) by AtlasNet, and (d) by our DCG.

the ground truth point cloud representation, but we random-
ly select 2500 points to supervise network training to avoid
over-fitting. Moreover, in single-view reconstruction, 24 im-
ages from different viewing angles are rendered for each
CAD model. In Figure 1, examples from the ShapeNet are
visualized. We follow the settings in [Choy et al., 2016;
Groueix et al., 2018], i.e., 31746 models for training and the
remaining 7943 for testing.

Comparative Methods. We compare our method with t-
wo state-of-the-art methods, i.e., the PSG [Fan et al., 2017]
and the AtlasNet [Groueix et al., 2018]. We utilize the t-
wo branches version of the PSG net to regress a total of
2500 points, which generates 768 points with deconvolution
and 1732 points via two fully connected layers in the other
branch. For the AtlasNet, we follow the settings in [Groueix
et al., 2018] and report results provided by the authors on-
line2, which are better than those in original AtlasNet pa-
per [Groueix et al., 2018]. Moreover, the AtlasNet generates
2500 points for its surface representation on 25 patches, each
of which includes 100 points.

Evaluation Metrics. We evaluate the quality of predicted
point clouds P to compare with the ground truth point cloud-
s P∗ by measuring the Chamfer distance (CD) [Fan et al.,
2017] and the Hausdorff distance (HD) [Tang et al., 2009]
respectively. Specifically, the Chamfer distance measures av-
erage matching distance of points in one set to the nearest
points in the other set, while the Hausdorff distance for the
maximum deviation between two sets. Moreover, F1 score
(or termed as F-measure) introduced in [Wang et al., 2018a]
is also employed for the harmonic average of the precision
and recall at a given threshold τ = 1e− 3 on point sets.

4.2 Results

Comparison with State-of-the-Art. Experiment results to
compare the proposed DCG net with the state-of-the-art PSG
[Fan et al., 2017] and AtlasNet [Groueix et al., 2018] in Ta-
bles 1, 2, and 3 for single-view shape reconstruction, dense
points inference, and shape autoencoding respectively. Our

2https://github.com/ThibaultGROUEIX/AtlasNet
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Methods pla. ben. cab. car cha. mon. lam. spe. fir. cou. tab. cel. wat. mean
AtlasNet 1.93 3.00 3.56 3.07 4.07 4.57 11.41 7.81 1.93 4.04 3.68 2.94 3.37 4.01
DCG wo/Graph (ours) 1.57 2.35 3.05 2.73 3.37 4.20 9.93 6.72 1.40 3.10 3.22 2.21 2.74 3.38
DCG (ours) 1.62 2.30 2.96 2.71 3.18 4.45 9.30 7.28 1.33 3.24 3.00 2.07 2.45 3.28

Table 2: Single-view dense points inference using the Chamfer distance in units of 103, with 30000 predicted points adopted.

Methods pla. ben. cab. car cha. mon. lam. spe. fir. cou. tab. cel. wat. mean
PSG 1.47 1.98 2.46 1.98 2.28 2.44 4.25 3.63 2.07 2.46 2.29 1.77 2.87 2.36
AtlasNet 0.83 1.21 1.68 1.53 1.56 1.66 2.32 2.54 0.63 1.72 1.50 1.21 1.28 1.48
DCG wo/Graph (ours) 0.83 1.13 1.62 1.54 1.52 1.61 2.18 2.45 0.58 1.62 1.45 1.19 1.27 1.43
DCG (ours) 0.77 1.05 1.54 1.46 1.44 1.54 2.02 2.39 0.55 1.53 1.33 1.14 1.20 1.35

Table 3: Shape autoencoding using the Chamfer distance in units of 103, with 2500 predicted points adopted.

method can consistently achieve superior performance on al-
l three performance metrics. Given the identical input data
and point clouds sampled from the same CAD models, per-
formance improvement can only be explained by the novel
network structure of the DCG net. Qualitative results of com-
parative evaluation are illustrated in Figure 5, which shows
our DCG can preserve the details of tiny object parts and
constrain predicted points close to satisfy its geometric man-
ifolds. Moreover, in comparison with the AtlasNet directly
generating a surface at one stage, our coarse-to-fine hierar-
chical learning can significantly reduce the size of learning
parameters in decoders (the right column of Table 1).

Effect of Graph Convolution Encoding. Tables 1, 2 and 3
also compare the proposed DCG with and without graph con-
volution operation. Specifically, to generate latent vector θ2
at the second cascade stage, DCG and DCG wo/Graph denote
the model structure whether it adds additional graph encoded
feature from P1 (highlighted in a red dashed rectangle of Fig-
ure 2) or not. As shown in Tables 1, 2 and 3, our DCG net can
beat its variant without graph convolutional encoding (i.e. the
DCG wo/Graph) on the CD and F1 metrics, but perform com-
parable on the HD metric in Table 1. Different performance
on the CD and HD can be caused by feature inconsistency on
complex low-dimensional manifolds based on coarse point
surface. However, without graph convolution encoding, our
DCG still performs better than other competitors.

Effect of Cascade Structure. In this experiment on eval-
uating the ensemble structure of decoders, DCG network
adopts 5 × 5 and 10 × 1 indicating the number of MLPs in
each cascade stage. For example, 5×5 denotes five MLP-
s (n = 5) in the coarse shape generation and five (m = 5)
for shape refinement. Note that, each MLP has the identical
structure and our DCG with both settings generates the same
size of point sets for a fair comparison. Our DCG method
(i.e. results shown in Table 1 employing the 5×5 structure)
can outperform its variant in the 10× 1 structure by reducing
3.3% on the mean Chamfer distance.

Effect of Weighting Strategies in the Dynamic Loss. We
further conduct one more experiment on evaluation of fixed,
linear and exponential decay of weights in the dynamic loss,
whose results are reported in Table 4. We can conclude that

α = 0 α = 0.5 lin. decay exp. decay
mean 4.41 4.26 4.18 4.09

Table 4: Single-view reconstruction comparison on weighting strate-
gies of the dynamic loss. Reported results on the Chamfer distance
in units of 103 are category-independently trained.

1) jointly learning on losses from different cascade levels
(α = 0.5, linear and exponential decay) performs better than
the only loss on the final point predictions (α = 0); 2) weight-
s decay favorable for coarse-to-fine network optimization
achieves competitive performance compared to fixed weight-
s in general. Such an observation verifies our motivation to
design the dynamic loss.

5 Conclusion
In this paper, we generates point-based surface in two cas-
cade stages – coarse shape generation and shape refinemen-
t. An ablation study confirms that all components in the
proposed DCG improve generation performance. On the
ShapeNet dataset, our DCG net achieves the state-of-the-art
performance – 4.09 and 1.35 on the CD metric for single-view
shape reconstruction and shape autoencoding, which outper-
forms the AtlasNet by 8.7% – 18.2%.
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