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Figure 1: Given an un-oriented point cloud of a complex object (left) or a large-scale scene (right), our method can reconstruct

an accurate surface mesh without the use of oriented normals.

Abstract

Surface reconstruction from point clouds is a fundamen-
tal problem in the computer vision and graphics commu-
nity. Recent state-of-the-arts solve this problem by indi-
vidually optimizing each local implicit field during infer-
ence. Without considering the geometric relationships be-
tween local fields, they typically require accurate normals
to avoid the sign conflict problem in overlapped regions
of local fields, which severely limits their applicability to
raw scans where surface normals could be unavailable. Al-
though SAL breaks this limitation via sign-agnostic learn-
ing, further works still need to explore how to extend this
technique for local shape modeling. To this end, we propose
to learn implicit surface reconstruction by sign-agnostic op-
timization of convolutional occupancy networks, to simulta-
neously achieve advanced scalability to large-scale scenes,
generality to novel shapes, and applicability to raw scans in

Correspondence to Dan Xu and Kui Jia.

a unified framework. Concretely, we achieve this goal by a
simple yet effective design, which further optimizes the pre-
trained occupancy prediction networks with an unsigned
cross-entropy loss during inference. The learning of occu-
pancy fields is conditioned on convolutional features from
an hourglass network architecture. Extensive experimental
comparisons with previous state-of-the-arts on both object-
level and scene-level datasets demonstrate the superior ac-
curacy of our approach for surface reconstruction from un-
orientated point clouds. The code is available at https:
//github.com/tangjiapeng/SA-ConvONet.

1. Introduction

Surface reconstruction from point clouds is of signifi-

cance to perceive and understand surrounding 3D worlds for

intelligent systems, which plays a fundamental role in nu-

merous practical applications, such as computer-aided de-

sign, 3D printing, and robotics grasping. Recently, this



problem has attracted wide attention as inexpensive and

portable commodity scanners such as the Microsoft Kinect

make it much easier to acquire 3D point clouds. Classical

methods [1, 5, 26, 24, 25] tackle this problem by mathemat-

ical optimization according to pre-defined geometric priors,

while learning-based methods [17, 11, 28, 31] choose to

learn geometric priors from large-scale 3D datasets in a

data-driven manner. Recently, representing 3D surface as

an implicit field has gained large popularity [10, 28, 30, 34,

46, 11, 22, 6, 14, 41, 31, 37]. Compared to other shape rep-

resentations such as voxel [12, 44], octree [32, 39, 43, 20],

point cloud [15] and mesh [17, 42, 23, 36, 29, 37], contin-

uous implicit fields can enable surface reconstruction with

infinite resolution and arbitrary topology.

A lot of methods have been proposed to advance the de-

velopment of implicit surface reconstruction from various

respects in terms of improving scalability, generality, and

applicability. However, there is still not an approach in

the literature to simultaneously achieve all these objectives

with satisfactory performance. Targeting better scalability

to large-scale scenes, several approaches [22, 6, 41, 31, 14]

learn local implicit fields and model a global shape as a

composition of local surface geometries, rather than con-

ducting global shape reasoning from a latent code. Towards

better generality to novel shapes, some works [30, 16, 22, 6,

41, 47] attempt to optimize the pre-trained priors at test time

to obtain a better solution for each given input, instead of

strictly respecting the learned priors. Existing state-of-the-

art methods [22, 6, 41] improve both scalability and gener-

ality via individual optimization of each local implicit field

during inference. However, without explicitly considering

geometric relationships between local fields, they heavily

rely on accurate normals to avoid the sign conflict prob-

lems in the overlapped regions of local fields. Although

SAL [2] breaks this limitation via sign-agnostic learning

that improves the applicability to real-world scans where

surface normals are unavailable, it can only perform global

shape modeling. Further works still need to explore how to

extend this technique for local shape modeling.

To this end, we propose to learn implicit surface re-

constructions by sign-agnostic optimization of convolu-

tional occupancy networks [31], to simultaneously achieve

the three important reconstruction objectives, i.e. advanced

generality, specialty, and applicability in a unified frame-

work. We achieve this goal by a simple yet effective so-

lution that further optimizes the pre-trained occupancy pre-

diction networks via sign-agnostic learning. The learning

of occupancy fields is conditioned on convolutional features

from an hourglass network (e.g. U-Net [33]). Our solution

is motivated by two key characteristics. The first character-

istic is that, after being pre-trained on the accessible datasets

with ground-truth signed fields, the occupancy decoder can

provide a signed field as initialization for the test-time opti-

mization. Thus we can further apply unsigned objectives to

optimize occupancy prediction networks, maximizing the

consistency between the desired iso-surface with the ob-

served un-oriented point cloud. The second characteristic

is that, the U-Net [33] aggregates both local and global in-

formation in an hourglass convolutional manner. The use

of local shape features not only preserves the fine-grained

geometries, but also enables the surface recovery of large-

scale indoor scenes. The integrated global shape features

can enforce geometric consistency between learned local

geometries and guarantee the assembly of local fields as a

globally consistent one, although we do not utilize guid-

ance from additional normal information. As shown in Fig-

ure 1, we can reconstruct surfaces with fine details directly

from un-oriented point clouds without the use of normals,

for both complicated objects to large-scale scenes.

Extensive experimental comparisons with state-of-the-

arts on both object-level and scene-level datasets, including

ShapeNet [8], synthetic indoor scene dataset [31], and real-

world scene datasets (ScanNet [13] and Matterport3D [7])

demonstrate the superior performance of our approach for

surface reconstruction from un-oriented point clouds.

2. Related Work
In this section, we briefly review existing methods for

surface reconstruction from raw point clouds. Specifically,

we only review those implicit reconstruction methods that

find a field function (occupancy function or signed distance

function) to approximate the given point cloud.

Classic Optimization-based Surface Reconstruction
Computing a continuous surface from its discrete approxi-

mation is a severely ill-posed problem, since there could be

infinitely possible solutions. Classical methods [1, 5, 26,

24, 25] formulate this task as a mathematical optimization

problem and try to solve this problem utilizing pre-defined

geometric priors such as local linearity and smoothness.

There have been a number of representative reconstruction

methods such as Radius Basis Function (RBF) [5], Moving

Least Square (MLS) [1], and Poisson Surface Reconstruc-

tion (PSR) [24, 25]. The RBF [5] represents surface as a

linear combination of a series of radial basis functions; the

MLS [1] fits observed points via finding those constituent

spatially-varying polynomials; the PSR [24, 25] models the

surface reconstruction as a Poisson’s equation.

Learning-based Surface Reconstruction More recently,

driven by large-scale 3D datasets (e.g. ShapeNet [8]), neu-

ral networks have achieved notable successes in the field

of implicit surface reconstruction from point clouds, rang-

ing from global to local field modeling. The global mod-

els [28, 10] intrinsically perform shape retrieval in the la-

tent space [40], leading to limited generality to represent

unseen shapes and restricted power to capture complex de-

tails. These drawbacks can be resolved by the local mod-



els [11, 34, 46, 31, 14] that focus on local geometry model-

ing. Our method also adopts the manner of the local implicit

field learning. Thus it possesses the capability of represent-

ing large-scale scenes. Another advantage is the better gen-

erality to unseen shapes, which can provide relatively good

initialization of signed fields for the test-time optimization.

Combination of Data-Driven Priors and Optimization
The above-mentioned learning methods [11, 34, 46, 31]

fix the learned priors during inference. Specifically, they

directly obtain a 3D surface via a single feed-forward

pass. As the pre-trained priors are fixed, they have dif-

ficulty in generalizing well to unseen shapes that are dis-

similar to the training samples. Some existing approaches

[30, 22, 6, 41, 45, 47, 38] try to combine the data-driven

priors with optimization strategy at the test phase to acquire

better results for each given input. Among them, the meth-

ods of local field optimization, including LIG [22], DeepLo-

calSDF [6], and PatchNet [41], can achieve state-of-the-art

performance. However, they require additional surface nor-
mals to solve the sign flipping problem when assembling

local fields into a globally consistent one, which seriously

limits their applicability to raw scans that lack reliable and

accurate surface normals. Our method also belongs to this

line of research. However, in contrast to them, we opti-

mize local implicit fields that are conditioned on the convo-

lutional features learned in an hourglass manner. Since the

global consistency between local fields can be effectively

maintained in the process of hourglass convolutional fea-

ture learning, we can always guarantee the local field as-

semblies as a globally consistent one during optimization,

although we do not have the guidance of surface normals.

Sign-Agnostic Surface Reconstruction The raw point

clouds scanned by sensing devices usually lack oriented

normals. Although we can approximate them via normal

estimation methods [21, 18, 35, 19, 4], the normal estima-

tion errors can cause degenerated surfaces. Thus it is more

appealing to model surface directly from un-oriented points

in a sign-agnostic manner [2, 3]. The SAL [2] avoids the use

of surface normals by properly initializing the implicit de-

coder network, such that they can produce signed solutions

of implicit functions only using unsigned objectives. Our

key idea of sign-agnostic implicit field optimization is sim-

ilar to SAL. With the assistance of auxiliary datasets with

ground-truth signed implicit fields, the occupancy decoder

can be trained to represent signed fields. Given signed im-

plicit fields as initialization for the test-time optimization,

we further adapt the pre-trained priors to the given input,

by applying the unsigned cross-entropy loss to align the de-

sired iso-surface with the observed un-oriented point cloud.

A concurrent work of SAIL-S3 [48] extended the geometric

initialization of SAL [2] for local signed field learning from

un-oriented point clouds. However, it still requires a post-

optimization stage to avoid the local sign flipping issue.

3. Approach
3.1. Overview

Given a set of observed points P = {pi ∈ R
3}ni=1, the

goal of our method is to reconstruct a surface S that is as

similar as possible to the underlying surface Ŝ . We choose

to approximate the signed implicit field representation Ô of

Ŝ by predicting a neural implicit field O due to its advan-

tage of reconstructing surfaces with infinite resolution and

unrestricted topology. Our goal is to simultaneously achieve

advancements in all three respects, i.e. scalability to large-

scale scenes, generality to novel shapes, and applicability to

raw scans. Towards this goal, we propose a simple yet ef-

fective solution of learning implicit surface reconstructions

by sign-agnostic optimization of convolutional occupancy

networks.

The overall pipeline of the proposed approach is shown

in Figure 2. Our approach consists of two stages, namely

convolutional occupancy field pretraining and designed

sign-agnostic, test-time implicit surface optimization. The

former stage is responsible for learning the local shape pri-

ors with global consistency constraints, and provides rela-

tively reasonable signed fields as initialization for the latter

stage, which further optimizes the whole network using the

unsigned cross-entropy loss to improve the accuracy of O.

We present the details of the proposed approach in the fol-

lowing two sections, i.e. Section 3.2 and Section 3.3.

3.2. Convolutional Occupancy Fields Pre-training

3.2.1 Convolutional Feature Learning

As shown in Figure 2, we first process the given input P
by a shallow PointNet [9] to obtain point-wise features.

Then, we convert them to volumetric features with a di-

mension of H ×W ×D, by encapsulating local neighbor-

hood information within a cell. Specifically, we integrate

all point features belonging to the same voxel cell using

the average pooling. To integrate both global and local in-

formation, we use a 3D-UNet to process V0 to obtain V.

Due to the issue of memory overhead of 3D-CNN, we set

H = W = D = 64, and the depth of the 3D U-Net is

set to 4 such that the receptive field is equal to the size of

V0. Due to the translation equivariance of convolution op-

erations and rich shape features integrated by the hourglass

netowork architecture, U-Net, we can enable scalable sur-

face reconstruction for large-scale scenes.

3.2.2 Occupancy Field Predicting

Based on the obtained volumetric features V, we can pre-

dict the occupancy probability O(q) ∈ R
3 of a point q ran-

domly sampled in 3D space. To do this, we first perform

trilinear interpolation to query the feature vector fq from

V according to the coordinate of q, and then feed q and
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Figure 2: Method Overview. Our approach is built upon the convolutional occupancy networks (CONet) [31] (middle)

that predicts an occupancy field O based on convolutional features V extracted from the input point cloud P via a cascaded

network of PointNet and 3D U-Net. We first pre-train the CONet [31] on the accessible datasets with ground-truth Ô using the

standard binary cross-entropy (BCE) loss (top). During inference, the proposed sign-agnostic optimization further fine-tunes

the whole network parameters via unsigned cross-entropy (UCE) loss to improve the accuracy of O (bottom).

fq into the occupancy decoder g that is implemented as a

light-weight network of multi-layer perceptron (MLP):

O(q) = sigmoid (g(q, fq)) ∈ (0, 1), (1)

where the occupancy probability of q is the sigmoid activa-

tion of final output logit g(q, fq).

3.2.3 Loss Function

During training, we uniformly sample some points Q within

the bounding volume of watertight mesh and compute their

ground truth of occupancy values. And we punish the dis-

crepancy between the predicted and the true occupancy val-

ues by a loss function written as:

L(O, Ô) =
∑
q∈Q

BCE
(
O(q), Ô(q)

)
, (2)

where BCE(x, y) = −ylogx − (1 − y)log(1 − x) denotes

the standard binary cross-entropy.

3.3. Sign-Agnostic Implicit Surface Optimization

In the inference stage, we can directly produce the im-

plicit field through a single feed-forward pass. But we may

not get satisfactory results if the given inputs are out of pre-

trained priors. In order to improve the generality to unseen

shapes, one can further optimize the pre-trained model for

the given input. But we cannot apply the loss function in

Equation 2 to supervise the network finetuning, because sur-

face normals associated with observed points are not avail-

able, which causes the unavailability of in-out fields. Al-

though we can choose to estimate the normals from P , the

normal estimation errors would increase the difficulty of re-

covering clean surfaces.

However, the requirements of normals can be avoided by

sign-agnostic optimization of occupancy field learning from

hourglass convolutional networks. According to SAL [2],

we know that by properly initializing network parameters,

the implicit decoder can represent the signed field of a unit

sphere, which helps us obtain signed solutions by unsigned

learning objectives. Similarly, the pre-trained occupancy

decoder can produce signed fields as initialization for the

test-time optimization. As such, we can directly employ

the unsigned cross-entropy loss to obtain consistency con-

straints between the occupancy field and unsigned inputs,

without the use of surface normals. Besides, global consis-

tency among local geometries can always be enforced dur-

ing the optimization stage, because the features from V are

decoded from the same global features. Thus, without the

guidance of normals, we can still guarantee globally consis-

tent local field assemblies. Specifically, the unsigned cross-

entropy (UCE) loss is formulated as:

Luce =
∑
q∈Q

BCE
(
O†(q), Ô†(q)

)
, (3)

where prediction O†(q) and target Ô†(q) are given by

O†(q) = sigmoid
(|g(q, fq)|) ∈ [0.5, 1), (4)

Ô†(q) =

{
0.5, for q ∈ QŜ
1.0, for q ∈ Q\Ŝ

, (5)



where QŜ is a point set obtained from the ground-truth sur-

face Ŝ , and Q\Ŝ is a point set sampled from non-surface

volume Q \ Ŝ . As Ŝ is unknown at the test phase, we

consider the observed surface P as an approximation of

Ŝ , and identify randomly sampled points in 3D space as

non-surface points Q\S . More specifically, we force the

observed surface P to align with the 0.5 level set of occu-

pancy field, and the signed occupancy values of non-surface

points to be either 0 or 1.

After the sign-agnostic optimization of the implicit

field, we apply the Multiresolution IsoSurface Extraction

(MISE) [28] and marching cubes [27] to extract surface

meshes as the final reconstruction results.

4. Experiments

Datasets We validate the efficiency of our method on ex-

periments of both object-level and scene-level surface re-

construction tasks. For the former task, we conduct com-

parison on the chair category of the ShapeNet [8] dataset.

For the latter task, we use the synthetic indoor scene dataset

[31]. The split of train/val/test sets follows the same setting

in CONet [31]. For each dataset, we randomly select 50

models from the test set to conduct quantitative evaluations.

We use point clouds of size 30, 000 sampled from true sur-

faces as inputs. Finally, we compare the synthetic-to-real

generality by conducting experiments on ScanNet-V2 [13]

and Matterport3D [7] datasets.

Implementation Details We first pre-train the convolu-

tional occupancy networks with a batch size of 32 and a

learning rate of 1×10−4 for overall 300k iterations. During

the sign-agnostic optimization, the whole network is further

optimized by the objective described in Equation 3 using a

batch size of 16 for 1000 iterations. The initial learning rate

is set to 3 × 10−5, and decays by 0.3 every 400 iterations.

We set |QŜ | = 512 and |Q\Ŝ | = 1, 536 in Equation 5.

Baselines We conduct comparison with three categories

of existing methods, i.e. classic optimization-based meth-

ods such as Screened Poisson Surface Reconstruction

(SPSR) [25], deep optimization-based methods such as

Sign-Agnostic Learning (SAL) [2] and Implicit Geometric

Regularization (IGR) [16], learning-based methods such as

Occupancy Networks (ONet) [28] and Convolutional Oc-

cupancy Networks (CONet) [31], and methods focusing on

optimizing data-driven priors such as Local Implicit Grid

(LIG) [22]. For SAL and IGR, we directly fit the neural im-

plicit field to the observed point cloud. For ONet, CONet,

and LIG, the evaluations are based on their provided pre-

trained models. Specifically, we summarize their respective

characteristics in Table 1. For methods that require oriented

surface normals, we follow [21] to estimate un-oriented nor-

mals and then reorient their directions.

Evaluation Metrics We consider Chamfer Distance (CD

Methods
Without

normals

Optimization of

network parameters

Local geometry

modeling

SPSR [25] × � �
ONet [28] � × ×
SAL [2] � × ×
IGR [16] � � ×
CONet [31] � × �
LIG [22] × � �
Ours � � �

Table 1: Working condition summary of different methods.

Note that our method is the first to maximize the scalability

to large-scale scenes, generality to novel shapes, and ap-

plicability to real-world scans in a unified framework by

performing local geometry modeling, optimizing network

parameters while not requiring normals during inference.

×0.01), Normal Consistency (NC ×0.01), and F-score (FS

×0.01) as primary evaluation metrics. The F-score is re-

ported with thresholds of τ and 2τ (τ = 0.01). The quan-

titative results between two point clouds are measured from

randomly sampled ten thousand surface points. For the CD,

the lower is better. For NC and FS, the higher is better.

5. Object-level Reconstruction

Methods CD ↓ NC ↑ FS (τ ) ↑ FS (2τ ) ↑
SPSR [25] 1.923 81.54 80.86 85.13

ONet[28] 1.117 84.58 62.35 86.57

SAL [2] 2.418 78.67 54.33 73.70

IGR [16] 2.678 75.97 69.02 76.01

CONet [31] 0.821 91.12 74.73 96.85

LIG [22] 2.200 80.35 60.62 65.99

Ours 0.522 93.51 97.16 99.37

Table 2: Quantitative comparison for surface reconstruction

from un-oriented point clouds on the ShapeNet-chair.

We first conduct the object-level reconstruction exper-

iments. To simulate the influence of sensing noises dur-

ing real scans acquisition, we perturb the input by gaussian

noise with zero mean and standard deviation 0.05.

As shown in Figure 3, our approach has demonstrated

superiority in terms of visual quality in the complex ob-

ject reconstruction. Compared to the methods of only us-

ing global shape features such as ONet [28], SAL [2], and

IGR [16]), ours is more capable of recovering complicated

geometries because we utilize rich shape features, includ-

ing both local and global information. Besides, instead of

strictly respecting the learned priors like CONet [31], more

faithful surface details (e.g. slender bars and tiny holes) can

be preserved by breaking the barrier of pre-trained priors

during inference. In addition, SPSR [25], IGR [16], and

LIG [22] tend to produce degenerated meshes, caused by



Input PC SPSR [25] ONet [28] SAL [2] IGR [16] CONet [31] LIG [22] Ours

Figure 3: Object-level Reconstruction on ShapeNet. Qualitative comparison for surface reconstruction from un-orientated

point clouds of ShapeNet-chair [13].

Input PC SPSR [25] SAL [2] IGR [16] CONet [31] LIG [22] Ours

Figure 4: Scene-level Reconstruction on synthetic rooms. Qualitative comparison for surface reconstruction from un-

orientated point clouds on the synthetic room indoor scene dataset provided by [31].



inaccurate normal orientation estimation. However, it has

no negative effects on our results, as we do not use the ad-

ditional information during the test-time optimization. Our

superiority is also verified by numerical results reported in

Table 2, where our method outperforms existing state-of-

the-art methods by large margins.

6. Scene-Level Reconstruction

Methods CD ↓ NC ↑ FS (τ ) ↑ FS (2τ ) ↑
SPSR [25] 2.083 78.21 76.17 81.22

SAL [2] 2.720 73.85 40.47 59.79

IGR [16] 1.923 77.94 74.02 81.23

CONet [31] 2.020 83.43 73.28 81.74

LIG [22] 1.953 79.82 62.46 70.96

Ours 0.495 90.04 93.85 98.82

Table 3: Quantitative results for surface reconstruction from

un-oriented point clouds on the synthetic room dataset [31].

To investigate whether our method possesses the scal-

ability to indoor scene reconstructions, we further con-

duct the experiments of 3D reconstruction from un-oriented

point clouds on the synthetic indoor scene dataset [31].

From the qualitative comparison shown in Figure 4, we can

observe that some subtle legs of chairs can also be recovered

by our approach, while others cannot capture these details.

This demonstrates that ours can scale well to large scenes as

we adopt the strategy of local geometry reasoning, instead

of global shape modeling as in SAL [2] and IGR [16]. Com-

pared to CONet [31], more fine-grained surface recoveries

demonstrate that our approach can achieve better general-

ity to novel scenes, due to the effective sign-agnostic opti-

mization that conforms the desired implicit surface to the

observed un-oriented surfaces. Moreover, the bypassing of

normal estimation enables more robust scene-level surface

reconstructions. Again, better quantitative results presented

in Table 3 consistently demonstrate the superiority of our

approach.

Methods CD ↓ NC ↑ FS (τ ) ↑ FS (2τ ) ↑
SPSR [25] 1.339 84.60 82.33 87.83

SAL [2] 2.026 81.24 61.54 80.90

IGR [16] 2.392 84.12 78.07 83.98

CONet [31] 1.559 82.05 59.55 80.76

LIG [22] 1.501 81.99 70.39 78.30

Ours 0.728 86.40 82.08 95.86

Table 4: Quantitative comparison for surface reconstruction

from un-oriented point clouds on the real-world ScanNet

dataset [31]. As watertight meshes are not provided by

ScanNet, we directly evaluate all methods using the pre-

trained models on the synthetic room dataset.

7. Real-World Scenes Generalization

To compare the generalization performance on real-

world scans, we also evaluate our approach on the

real-world datasets, including ScanNet [13] and Matter-

port3D [7]. Notably, all models are only trained on the same

synthetic indoor scene dataset.

ScanNet-V2 The qualitative and quantitative comparisons

are respectively shown in Figure 5 and Table 4. As can be

seen, compared to other methods, our results achieve clearly

better numerical scores and more fine-grained surface ge-

ometries, which effectively verifies the better generalization

ability of the proposed method on real-world scans.

Matterport3D To evaluate its scalability to huge scenes

that contain multiple rooms, we finally conduct experiments

on the Matterport3D dataset [7]. Following the sliding-

window strategy presented in [31], we separately apply the

designed sign-agnostic optimization of convolutional oc-

cupancy networks to each room. The visualization com-

parison is presented in Figure 5 (d). Notably, the Matter-

port3D [7] is significantly different from the synthetic in-

door room dataset that is used to pre-train our network. But

our reconstruction results can still preserve rich details in-

side each room while adhering to the room layout, which

fully demonstrates that our method can achieve better scal-

ability to huge scenes and better robustness to noises from

different sensing devices.

8. Conclusion

For the task of surface reconstruction from un-oriented

point clouds, we have proposed a simple yet effective

solution of learning implicit surface reconstructions by

sign-agnostic optimization of convolutional occupancy net-

works, which achieves scalability to large scenes, general-

ity to novel shapes, and applicability to real-world scans in

a unified framework. The characteristics of implicit field

learning from convolutional features of hourglass networks

enable the test-time optimization without the use of surface

normals. Extensive experiments on both object-level and

scene-level datasets show that our method significantly out-

performs the existing methods, both quantitatively and qual-

itatively. A limitation of our approach is the slow inference

speed, which is also a common drawback of test-time opti-

mization methods. We leave it as our future effort.
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Figure 5: Scene-level Reconstruction on ScanNet [13] and Matterport3D [7]. Qualitative comparison for surface recon-

struction from un-orientated scans of ScanNet (a, b, c) and Matterport3D (d). All methods except SPSR are trained on the

synthetic room dataset and directly evaluated on ScanNet.
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