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Abstract

Semi-supervised learning (SSL) has been studied for a
long time to solve vision tasks in data-efficient application
scenarios. SSL aims to learn a good classification model us-
ing a few labeled data together with large-scale unlabeled
data. Recent advances achieve the goal by combining mul-
tiple SSL techniques, e.g., self-training and consistency reg-
ularization. From unlabeled samples, they usually adopt a
confidence filter (CF) to select reliable ones with high pre-
diction confidence. In this work, we study whether the mod-
erately confident samples are useless and how to select the
useful ones to improve model optimization. To answer these
problems, we propose a novel Taylor expansion inspired
filtration (TEIF) framework, which admits the samples of
moderate confidence with similar feature or gradient to the
respective one averaged over the labeled and highly confi-
dent unlabeled data. It can produce a stable and new infor-
mation induced network update, leading to better general-
ization. Two novel filters are derived from this framework
and can be naturally explained in two perspectives. One
is gradient synchronization filter (GSF), which strengthens
the optimization dynamic of fully-supervised learning; it se-
lects the samples whose gradients are similar to class-wise
majority gradients. The other is prototype proximity filter
(PPF), which involves more prototypical samples in train-
ing to learn better semantic representations; it selects the
samples near class-wise prototypes. They can be integrated
into SSL methods with CF. We use the state-of-the-art Fix-
Match as the baseline. Experiments on popular SSL bench-
marks show that we achieve the new state of the art.

1. Introduction
Deep learning has achieved great success in computer

vision tasks, with image classification [9] as one of the
prominent examples. The success can be mainly attributed
to large-scale labeled data. However, annotating enormous
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training data for all tasks of interest is practically infeasible.
To reduce the labeling cost, the topic of semi-supervised
learning (SSL) has been proposed and there are already a
large number of research works in SSL [40]. The goal of
SSL is to achieve good model generalization using limited
labeled data and many unlabeled data that are assumed to
follow the same distribution. In this work, we investigate
the classical topic, aiming to push the limit of SSL.

Recent SSL methods rely on deep models [47] to learn
feature representations that can facilitate the subsequent
classification. A common strategy is self-training [12, 17,
31], where the pseudo labels are iteratively generated and
then used as supervision to guide the model training on un-
labeled samples. Another popular paradigm is consistency
regularization [29, 33], which constrains the model to pro-
duce consistent predictions for two different duplicates of
the same unlabeled sample. The difference between the two
duplicates can be made by random data augmentation [33]
or perturbation of network parameters [29]. After, a lot of
extensions have been proposed [2, 16, 21, 24, 38, 49]. The
two techniques are effective but not optimal on their own, as
suggested in [26]. The current best practice in SSL is tech-
nique combination, e.g., combining self-training and con-
sistency regularization [4, 5, 18, 37, 44, 48, 48]. The cluster
and smoothness assumptions are enforced simultaneously.
The former [7] assumes that the decision boundaries are lo-
cated in low-density regions and the latter [40] assumes that
the adjacent samples have similar labels. Such a combi-
nation can progressively improve the model performance,
as verified in the theoretical work [42]. Note that the two
techniques would be uninformative if the model predicts
a uniform distribution over classes for unlabeled samples.
To address it, existing methods adopt confidence filtering
[10, 18, 37], which abandons the samples whose prediction
confidences (ranged in [0, 1]) are lower than a predefined
high threshold (e.g., 0.95 [37]). It is reasonable that the
least confident samples are extremely unreliable. But are
all the moderately confident samples useless, e.g., ranged in
(0, 75, 0.95)? Is there any way to pick out the useful ones
to enhance the optimization power applied to the model?



In this work, we solve the questions by introducing
a novel framework of Taylor expansion inspired filtration
(TEIF). The Tayor formula of the cross-entropy loss func-
tion w.r.t. the feature of one sample with true or pseudo la-
bel mainly includes terms of the multiplication of gradient
and feature of finite orders. To make the change of loss con-
sistent in the neighborhood of the feature, this framework
selects the samples of moderate confidence, whose feature
or gradient is similar to the respective one averaged over
the labeled and highly confident unlabeled data, which are
the most reliable. Hence, the final network update is still
close to the one determined by the most reliable samples
and further incorporates the new information contained in
the selected samples of moderate confidence, such that the
model optimization could be steady and improved.

From this framework, two novel filters are derived to
select the helpful samples from the moderately confident
unlabeled data. The selected samples together with the
highly confident ones are then used to train the classifica-
tion model. The first filter based on gradients assumes that
one moderately confident sample is useful if it follows the
optimization dynamic of fully-supervised learning [1, 50].
The previous research [1] has verified that deep neuron net-
works learn simple patterns first that are better fitted by
easy examples. The fact implies that pattern learning could
be improved if such an optimization dynamic is strength-
ened. On the other hand, the recent approach [14] relies on
the sample feature gradients to characterize the optimiza-
tion dynamic, i.e., constraining the local and global align-
ments to be consistent. By nature of the gradient-based fil-
ter, we can thus approximate the optimization dynamic by
class-wise majority gradients, which are computed on fea-
tures of the labeled and highly confident unlabeled samples,
i.e., easy examples. From those moderately confident sam-
ples, we select the ones that have similar feature gradients
to the corresponding majority gradient. We thus term this
method as gradient synchronization filter (GSF). The sec-
ond filter based on features assumes that one moderately
confident sample is useful if it has a certain level of pro-
totypicality [36]. Specifically, the class-wise prototypical
representations, which best characterize specific semantic
classes (as suggested in [36]), are computed by taking an av-
erage over sample features of each class. The samples near
prototypes are selected from those moderately confident un-
labeled data. We thus term this method as prototype prox-
imity filter (PPF). Our methods can be naturally integrated
into SSL frameworks with confidence filter. To challenge
the current state of the art, we choose FixMatch [37] as the
baseline. Experiments on commonly used SSL benchmarks
show that our methods outperform FixMatch. The em-
pirical study also answers the previously raised questions:
some moderately confident samples are useful and there are
ways to pick them out. Our main contributions are summa-

rized below. (1) We introduce new and significant questions
for SSL and provide preliminary answers for them, i.e.,
whether all the moderately confident samples are useless
and how to select the useful ones from them. (2) To solve
the questions, we propose a novel Taylor expansion inspired
filtration (TEIF) framework, which relies on the Taylor ex-
pansion of the loss function to inspire the key measurement
index of sample filtration, i.e., gradient and feature of finite
orders. The principle wherein is to make the network update
stable and improved after adding the selected moderately
confident samples. (3) Two novel filters are derived from
this framework and make sense from different perspectives
of optimization dynamic and prototype proximity, leading
to gradient synchronization filter (GSF) and prototype prox-
imity filter (PPF) respectively. The moderately confident
samples selected by GSF or PPF are then involved in model
training, which helps learn decision boundaries closer to the
ground-truth ones.

2. Related Works

We briefly review the recent deep semi-supervised learn-
ing (SSL) methods, focusing on the components of Fix-
Match on which we base our work. A comprehensive sur-
vey is provided in [40] and pseudo label generation via
learning to learn is also a hot topic [13, 19, 20, 28, 30, 41].

Self-Training. The work [12] aims to enforce the cluster
assumption that the decision boundaries should be located
in low-density regions; technically, it minimizes the infor-
mation entropy of label distributions predicted by the model
for the unlabeled data. Lee [17] picks up the class of max-
imum predicted probability as a hard target for each unla-
beled sample; then, the pseudo labels are used to fine-tune
the model. To improve, UPS [31] selects more accurate
pseudo labels by considering both uncertainty and confi-
dence of network predictions. Many other applications also
adopt self-training, e.g., natural language processing [22],
object detection [32], and domain adaptation [6].

Consistency Regularization. This technique aims to im-
plement the smoothness assumption by enforcing consis-
tency between the model’s outputs of the original and per-
turbed versions of the same input [42]. It is first intro-
duced in [3], which regularizes the behavior of a pseudo-
ensemble to be robust to the noise process generating it.
Rasmus et al. [29] and Sajjadi et al. [33] develop it by per-
turbing network parameters, applying stochastic transfor-
mations on images, or utilizing the randomness involved in
some components of the network, e.g., dropout and random
max-pooling. In [16], the model prediction for an unlabeled
sample is matched to its temporal ensembling counterpart.
Differently, the work [38] turns the match object to the pre-
diction of mean teacher, i.e., the moving average of previous
models. In [49], the worst-case perturbations are imposed



on network weights and structures, which can be derived
by solving respective optimization problems with spectral
methods. PAWS [2] enforces consistent non-parametrical
predictions between the anchor and positive views.

Technique Combination. Individual SSL techniques on
their own are unable to achieve higher levels of perfor-
mance, as revealed in recent researches [26, 44, 48]. There-
fore, a better strategy is to combine these simple but effec-
tive techniques. In [4], multiple strongly-augmented ver-
sions of an unlabeled sample are involved in mixup train-
ing, where they use the sharpened model prediction of the
sample’s weakly-augmented version as the pseudo label; a
distribution alignment component is introduced to make the
predicted label distribution close to the ground truth one.
Recently, a simplified version [37] trains the model with
the strongly-augmented version of any unlabeled sample
and uses as supervision the class of maximum prediction
probability of its weakly-augmented version, where only
the high-confidence samples are selected. CoMatch [18]
enforces the relation consistency between pseudo label and
feature embedding graphs. Differently, we take the first step
towards discovering the effectiveness of moderately confi-
dent samples by proposing a novel framework of Taylor ex-
pansion inspired filtration, which derives the sample filters
based on optimization dynamic or prototype proximity.

3. Method

The task at hand is assumed to distinguish between K
classes, given a small batch of B labeled examples X l =
{(xl

i, y
l
i)}Bi=1 and a large batch of µB unlabeled examples

X u = {xu
i }

µB
i=1, where y ∈ {1, 2, . . . ,K} and µ ∈ N+.

The objective of semi-supervised learning (SSL) is to learn
a feature extractor E(·) that lifts any input image x to the
feature space, i.e., z = E(x), and a classifier F (·) that maps
the learned feature to a probability vector p = F (z), where
each element pk (k ∈ {1, 2, . . . ,K}) represents the possi-
bility of assigning the sample to a class k. We also write
p (resp. pk) as p(x) (resp. pk(x)) when the contexts re-
quire. The classification model F (E(·)) is trained with X l

and X u, aiming to generalize well on unseen test samples.
Following [37], we apply to unlabeled training samples the
two types of strategies, i.e., the weak and strong augmenta-
tions, which are denoted by α(·) and A(·) respectively.

3.1. Preliminaries

We start by introducing the popular SSL techniques, i.e.,
self-training and consistency regularization. Self-training
uses the model prediction itself as the artificial label to
guide the model training on unlabeled data [23, 34]. The
idea is instantiated by two representative approaches, i.e.,
pseudo-labeling [17] and entropy minimization [12], which
differ in the way of label generation. The former takes the

class of highest score as the label (of one-hot form). Let
ŷu = argmaxk p

u
k be the pseudo label for an unlabeled ex-

ample xu. The objective of self-training in [17] is

JST = − 1

µB

µB∑
i=1

log pŷu
i
(xu

i ), (1)

which is a standard cross-entropy loss. Here, pŷu
i
(xu

i ) indi-
cates the element of the probability vector at the predicted
class ŷui for the example xu

i . Optimizing Eq. (1) reduces the
prediction uncertainty for unlabeled data, similar to [12].

Consistency regularization is based on the smoothness
assumption [40]. It is typically implemented by matching
the model predictions of two different augmented versions
of the same unlabeled example. The following objective of
consistency regularization is used in [33]

JCR =

µB∑
i=1

||p(α(xu
i ))− p(α(xu

i ))||22, (2)

where we note that α(·) is a stochastic function and thus
produces varying data augmentations. Minimizing JCR en-
courages the smoothness and stability of model prediction
over the entire data manifold [40]. Other variants of consis-
tency regularization include matching predictions of an ex-
ample and its virtual adversarial counterpart [24], or match-
ing the current and temporal ensemble predictions [16], to
name a few. Recent works [4, 24, 37, 44] also use cross-
entropy to measure the prediction divergence.

The state-of-the-art method of FixMatch [37] com-
bines self-training and consistency regularization as fol-
lows. It uses the pseudo label of a weakly-augmented ver-
sion α(xu), i.e., ŷu = argmaxk pk(α(x

u)), as the super-
vision of a strongly-augmented counterpart A(xu). Col-
lectively, the model is trained with the weakly-augmented
labeled data {(α(xl

i), y
l
i)}Bi=1 and strongly-augmented un-

labeled data {(A(xu
i ), ŷ

u
i )}

µB
i=1. Considering that the two

techniques would be uninformative if model predictions fol-
low the uniform distribution, FixMatch adopts the typical
confidence filter to discard the unlabeled examples whose
confidence (i.e., maximum class probability) is lower than
a pre-defined high threshold τ . Thus, the selected set
{(A(xu

i ), ŷ
u
i )|pŷu

i
(α(xu

i )) ≥ τ}µBi=1 is in fact involved in
training. The overall objective of FixMatch is composed of
a supervised loss Jsup and an unsupervised loss Juns, as

min
E,F
Jsup + λuJuns, (3)

where λu is a trade-off hyperparameter and

Jsup = − 1

B

B∑
i=1

log pyl
i
(α(xl

i)),

Juns = −
1

µB

µB∑
i=1

I[pŷu
i
(α(xu

i )) ≥ τ ] log pŷu
i
(A(xu

i )).



Here, I[·] is an indicator function. In FixMatch, the thresh-
old τ ∈ [0, 1) of confidence filter is set to a high value, e.g.,
0.95, since the pseudo labels of the most confident samples
are assumed to be mostly correct [51]. Put it another way,
FixMatch abandons all the samples with pŷu(α(xu)) < τ
at each training iteration. The least confident samples
are indeed too unreliable to use. However, are all the
samples with moderate confidence useless, e.g., 0.75 <
pŷu(α(xu)) < 0.95? We in this work struggle to answer
the question by introducing a novel Taylor expansion in-
spired filtration (TEIF) framework, as detailed shortly. The
filters derived from this framework can select the helpful
ones from the moderately confident samples to improve op-
timization over the model, as empirically verified in Sec. 4.

3.2. Taylor Expansion Inspired Filtration

We first define the Taylor formula by borrowing from
the established knowledge of function approximation in the
advanced-math community [11, 46], as follows

J (z′) =J (z) + [∇J (z)]T (z′ − z)+

1

2
(z′ − z)T [HJ (z)](z′ − z) +R2,

(4)

where J (z) is the cross-entropy loss function at the current
feature z of a sample x with true or pseudo label, z′ is in
the neighborhood of z, ∇J (z) is the first-order gradient,
HJ (z) is the Hessian matrix, and R2 is the infinitesimal
remainder of the second order expansion. In Eq. (4), the
loss difference between z′ and z, i.e., J (z′)−J (z), mainly
comprises two terms that are the multiplication of gradient
and feature of finite orders.

Recall that existing SSL methods [37, 44] compute the
loss by using the labeled and highly confident unlabeled
samples only, which are commonly believed to be the most
reliable ones. On this basis, the selected samples of moder-
ate confidence should satisfy the condition that the change
direction of the loss in the neighborhood of z, i.e., rise or
fall, is similar to the one averaged over the most reliable
samples. Hence, the final network update does not devi-
ate too much from the one determined by the labeled and
highly confident samples; meanwhile, the new knowledge
is introduced by the selected moderately confident samples,
and thus the volumes of information contained in the update
are increased. Therefore, the model optimization could be
improved, leading to better generalization.

To this end, we do the sample filtration for the mod-
erately confident unlabeled data by selecting the sam-
ples whose gradient or feature is similar to the respective
one averaged over the labeled and highly confident sam-
ples, termed the Taylor expansion inspired filtration (TEIF)
framework. Due to limited computation overhead, we only
consider the first-order quantities in this work and will study

Figure 1. An illustrative example of sample selection in GSF.

the higher-order information in future work by designing al-
gorithms to reduce the computational complexity.

We note that the gradients are closely related to the op-
timization dynamic [1, 14, 50] and the features characterize
a certain level of semantics of the specific class [27,36,37],
i.e., semantic prototypicality; we accordingly depict the two
filters derived from our TEIF framework in perspectives of
optimization dynamic and prototype proximity later.
Remarks. It is obvious that additional correct predictions
would exist for unlabeled examples whose confidence of
pseudo labels is less than τ ; self-training with these addi-
tional examples would improve performance of the learned
model. The theoretical result in [42] also tells that given
enough correctly pseudo-labeled examples, self-training
with consistency regularization is guaranteed to achieve
high accuracy on the true labels for the unlabeled data. The
following introduced filters aim to identify more correctly
pseudo-labeled examples from those with moderately con-
fident predictions, as empirically demonstrated in Fig. 4c.

3.3. Gradient Synchronization Filter

The optimization dynamic of fully-supervised learning is
that deep models learn simple patterns first, which are better
fitted by easy examples, as suggested in [1]. The optimiza-
tion over deep models is content-aware, i.e., multiple train-
ing samples that share patterns are utilized first. Existing
methods characterize the optimization dynamic by gradi-
ents of the loss function w.r.t. the network parameters [50]
or sample features [14]. The latter scheme naturally cor-
responds to the gradient-based filter derived from the pro-
posed TEIF framework and has low computation and mem-
ory overheads. In other words, from the moderately confi-
dent samples, the filter selects the ones that follow the op-
timization dynamic of fully-supervised learning, which can
facilitate pattern learning. Specifically, we first compute the
majority gradient by taking the sum over normalized feature
gradients of labeled samples and highly confident unlabeled
ones that are assumed to be mostly correct. To capture the
optimization dynamic exactly, we define the majority gradi-



ent at the finer class level, as follows

gm
k =

∑
i∈Dl

k

gl
i

||gl
i||2

+
∑
i∈D̂u

k

I[pŷu
i
(α(xu

i )) ≥ τ ]
gu
i

||gu
i ||2

, (5)

where the instance indexes of the k-th class in labeled
and unlabeled batches are respetively Dl

k = {i|(xl
i, y

l
i) ∈

X l ∧ yli = k} and D̂u
k = {i|xu

i ∈ X u ∧ ŷui = k},
k ∈ {1, 2, . . . ,K}, and the feature gradients of labeled and
unlabeled samples are respectively

gl
i =

∂ − log pyl
i
(α(xl

i))

∂zli
,gu

i =
∂ − log pŷu

i
(α(xu

i ))

∂zui
.

We note that in each training iteration, samples in the la-
beled and unlabeled batches are taken at random (since we
use stochastic gradient descent (SGD)), which may provide
incomplete knowledge on the optimization dynamic, lead-
ing to biased sample selection. To avoid it, we apply the
exponential moving average [45] to each majority gradient
over the past batches in the same training epoch, as follows

gm
k ← ηmgm

k + (1− ηm)gm
k [t], (6)

where t ∈ {1, 2, . . . , T}, T is the number of iterations in
one training epoch, gm

k [t] is the majority gradient at the cur-
rent iteration t, gm

k = gm
k [t] when t = 1, and ηm ∈ [0, 1] is

the moving average coefficient. Then, we employ the cosine
similarity to measure the degree of synchronization between
the feature gradient of one moderately confident unlabeled
sample xu

i and its corresponding majority gradient gm
ŷu
i

as

sui = 0.5(1 +
gu
i · gm

ŷu
i

||gu
i ||2 ||gm

ŷu
i
||2

), (7)

which is scaled to be in [0, 1]. From the samples whose
confidence puŷu is in (0.75, 0.95), we select the ones with
the gradient synchronization degree su ≥ τs. Here, τs is
a threshold hyperparameter for our proposed gradient syn-
chronization filter (GSF). The moderately confident sam-
ples selected by GSF together with the highly confident
ones are used to compute the unsupervised loss Juns in
each training iteration. An illustration is given in Fig. 1.

3.4. Prototype Proximity Filter

The barely supervised study from FixMatch [37] has
shown that the samples in one class differ in their prototyp-
icality, i.e., to what extent they can characterize semantics
of the specific class. The most representative samples are
most suitable for data-efficient learning in that they yield a
significant performance gain under the same low-label pro-
tocol. Inspired by it, the feature-based filter derived from
the proposed TEIF framework is in fact to select the most
prototypical examples that are close to the corresponding

Figure 2. An illustrative example of sample selection in PPF.

prototypes, from the moderately confident unlabeled data.
We follow [27, 36] to define each class-wise prototype, i.e.,
prototypical representation, by the mean over sample fea-
tures of one particular semantic class, which is written as

zpk =
1

nk

∑
i∈Dl

k

zli +
∑
i∈D̂u

k

I[pŷu
i
(α(xu

i )) ≥ τ ]zui

 , (8)

where nk is the total number of instances of the k-th class
in labeled and highly confident unlabeled sets. The cate-
gorical information contained in zpk is usually insufficient
to represent the semantic meaning of the k-th class since
it only considers training data in the current iteration. For
instance, it is possible that some classes are missing in the
current labeled and unlabeled batches since the two batches
are randomly sampled. To address the issue, we also fol-
low [45] to conduct the exponential moving average of each
class-wise prototype over all previous iterations, as follows

zpk ← ηpz
p
k + (1− ηp)z

p
k[t], (9)

where zpk = zpk[t] when t = 1 and ηp ∈ [0, 1] is the mov-
ing average coefficient. Then, we use a variant of Student
t-distribution [39, 43] to measure the extent of vicinity be-
tween the feature of one moderately confident unlabeled
sample xu

i and its correpsonding prototype zpŷu
i

as

vui =
1

1 + ||zui − zpŷu
i
||2

, (10)

which is ranged from 0 to 1. From the moderately confident
samples with puŷu ∈ (0.75, 0.95), we select the ones whose
prototype vicinity extent vui ≥ τv . Here, τv is the thresh-
old of our proposed prototype proximity filter (PPF). Dur-
ing feature learning, the extent of instance-to-center vicinity
could be in an arbitrary scale since the Euclidean distance
is in a range of [0,+∞), which is the base of Eq. (10). To
solve it, we propose to use an adaptive threshold, which is



Figure 3. Error rates w.r.t. the lower (left) and upper (center) bounds of moderate confidence, and the gradient synchronization threshold
of our proposed GSF (right) on 40- and 250-label settings.

the moving average of minimal vicinity extent over labeled
and highly confident unlabeled samples, as follows

τv[t] = min

(
min
i∈Dl

vli, min
i∈D̂u,pŷu

i
(α(xu

i ))≥τ
vui

)
, (11)

τv ← ηpτv + (1− ηp)τv[t], (12)

where Dl and D̂u collect the indexes of instances in the
current labeled and unlabeled batches respectively. The
unsupervised loss Juns in Eq. (3) is then computed using
the moderately confident samples selected by PPF and the
highly confident ones. An illustration is given in Fig. 2.

4. Experiments

We choose the state-of-the-art FixMatch [37] as the base-
line and examine our proposed gradient synchronization
filter (GSF) and prototype proximity filter (PPF) on three
commonly used SSL benchmarks. Specifically, we conduct
experiments with various number of labeled samples on the
datasets of CIFAR-10 [15], CIFAR-100 [15], and SVHN
[25]. CIFAR-10 has 10 classes, 50, 000 training images,
and 10, 000 test ones; CIFAR-100 has 100 classes, 50, 000
training images, and 10, 000 test ones, which is very chal-
lenging due to much more classes; SVHN has 10 classes,
73, 257 training images, and 26, 032 test ones.

We follow the evaluation protocols of FixMatch and use
the training set with a few labels for training and the test set
for inference. We use a WRN-28-2 [47] as the backbone
except for CIFAR-100 that uses a wider WRN-28-8, where
the last FC layer is the instantiation of F (·). We set the
confidence threshold τ as 0.95, which is the higher bound
of the moderate confidence; we denote its lower bound by
cl and set cl as 0.75. We set τs as 0.95. τv is dynamically
updated by Eqs. (11) and (12). We empirically set ηm and
ηp as 0.7. The hyperparameters λu, µ, and B are set as 1,
7, and 64 respectively. The weak augmentation α(·) is im-
plemented by random flipping and cropping; the strong one
A(·) performs additional image processing by RandAug-
ment [8]. Other training details are the same as [37].

4.1. Ablation Study

We by convention conduct the ablation study on a single
250-label setting from CIFAR-10. For a more thorough ex-
amination, we also do the study on a single 40-label setting.

Moderate Confidence Bounding. To examine the range
of moderate confidence used in our methods, we pro-
vide the classification accuracy as (1) changing its lower
bound cl in [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9],
with its upper bound τ fixed as 0.95, and (2) altering τ in
[0.8, 0.85, 0.9, 0.95, 1] with cl fixed as 0.75. The results of
the two cases are shown in Fig. 3. It is observed that the
performance is almost always benign and stable in the re-
spective small-value ranges of the lower and upper bounds.
A possible reason is that the increase in the number of se-
lected unlabeled samples (i.e., more samples are selected
at smaller values) could compensate the negative effects
caused by including low-quality samples in training. As
the lower and upper bounds increase, the performance stays
almost the same on the 250-label setting whereas it does
not on the 40-label setting, revealing that the sensitivity of
one SSL method to the hyperparameters is increased with
fewer labels per class due to less reliable pattern learning.
Note that when the upper bound has a value of 1, all unla-
beled samples for training are selected by our GSF or PPF,
and thus all highly confident samples may be discarded.
In this case, the error rates go up, suggesting that the use
of highly confident samples is indispensable for learning a
good model. Our methods achieve minimal error rates when
the lower and upper bounds are 0.75 and 0.95 respectively.

Gradient Synchronization Thresholding. To inspect the
influence of the gradient synchronization threshold τs (cf.
Sec. 3.3), we perform the sensitivity analysis by varying
τs in [0.2, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1] with the
moderate confidence ranged in [0.75, 0.95]. The results
are shown in Fig. 3. We can observe that with 25 labels
per class, the error rate fluctuates very slightly with the in-
crease of τs, indicating that more highly confident samples
(on account of more labels) can build a better foundation
of model optimization for pattern learning. Hence, the se-
lected low-quality samples have less adverse impact on the



(a) CIFAR-10 with 40 labels (b) CIFAR-10 with 250 labels (c) Mislabeled ratio
Figure 4. (a)-(b): Ratios of all selected samples (denoted by “ALL”) and highly confident ones (denoted by “HC”) in the unlabeled batch.
The margin between a pair of ALL and HC is the ratio of selected samples of moderate confidence. (c): Ratios of mislabeled samples in
the selected pseudo-labeled set on the 40-label setting of CIFAR-10. In each figure, the horizontal axis represents the training epoch.

learned model’s classification behavior. On the 40-label set-
ting, the performance changes considerably as varying the
value of τs, confirming that the hyperparameter sensitivity
is inversely proportional to the number of labels available.
As we can see, at the value of 0.95, the error rates are at their
lowest. Particularly, when τs is 1, our GSF degenerates into
the baseline FixMatch, whose error rates are higher.

Sample Selection Ratio. Recall that we train the classi-
fication model by using the moderately confident samples
filtered by GSF or PPF, together with the highly confident
ones. To know how the ratios of all selected samples and
highly confident ones in the unlabeled batch evolve dur-
ing the model training of our methods, we plot the change
curves of these ratios in Fig. 4, where each point represents
the averaged ratio over all previous and the current training
iterations. As the training process proceeds, these ratios first
increase and then stabilize at the level close to 1, indicating
that an increasing number of unlabeled samples participate
in training; on the 250-label setting, these ratios are consis-
tently higher than those on the 40-label setting, manifesting
that more experience, more confidence in making decisions;
the gap between the paired ratios of all selected samples and
highly confident ones, i.e., the ratio of selected moderately
confident samples, is big in the earlier stage and decreases
in the later stage since the instinct of self-training is to pro-
duce more and more samples of high confidence. We also
show the mislabeled ratio for different methods in Fig. 4c,
where we observe that our GSF and PPF enjoy a lower mis-
labeled ratio, suggesting that our methods can learn better
decision boundaries closer to the ground-truth ones.

Saliency Map Visualization. To intuitively understand
what the network has learned, we utilize the typical Grad-
CAM [35] to visualize the saliency maps from FixMatch
and our GSF and PPF. The saliency map for an example is
obtained by weighting the feature maps with the gradients
w.r.t. the features. The results are shown in Fig. 5, where the
examples are randomly sampled from each class. We find
that all methods attend to the image regions that are seman-
tically related to classification in most examples; with 25

Figure 5. Visualizing the Grad-CAM saliency maps from the base-
line FixMatch and our proposed GSF and PPF on 40- and 250-
label settings. Note that the number on top of each picture means
the ground-truth (first column) or predicted labels (other columns).

labels per class, they produce more accurate visualizations,
implying that more supervisory information is conducive to
pattern learning and thus the SSL technique self-training is
in urgent need of improvement to better generate and uti-
lize the massive amounts of pseudo-labeled data. Notably,
our methods learn better feature representations that capture
more complete semantic patterns, e.g., first example.

4.2. Results

We compare our methods with existing ones on the stan-
dard CIFAR-10, CIFAR-100, and SVHN benchmarks. The
compared methods can be divided into two groups. The first



CIFAR-10 CIFAR-100 SVHN

Method 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels 40 labels 250 labels 1000 labels

Π-Model [29] - 54.26±3.97 14.01±0.38 - 57.25±0.48 37.88±0.11 - 18.96±1.92 7.54±0.36
Pseudo-Labeling [17] - 49.78±0.43 16.09±0.28 - 57.38±0.46 36.21±0.19 - 20.21±1.09 9.94±0.61
Mean Teacher [38] - 32.32±2.30 9.19±0.19 - 53.91±0.57 35.83±0.24 - 3.57±0.11 3.42±0.07
MixMatch [5] 47.54±11.50 11.05±0.86 6.42±0.10 67.61±1.32 39.94±0.37 28.31±0.33 42.55±14.53 3.98±0.23 3.50±0.28
UPS [31] - - 6.42 - - - - - -
Meta-Sim [41] - - 6.10±0.10 - - 29.69±0.18 - - -
UDA [44] 29.05±5.93 8.82±1.08 4.88±0.18 59.28±0.88 33.13±0.22 24.50±0.25 52.63±20.51 5.69±2.76 2.46±0.24
ReMixMatch [4] 19.10±9.64 5.44±0.05 4.72±0.13 44.28±2.06 27.43±0.31 23.03±0.56 3.34±0.20 2.92±0.48 2.65±0.08
FixMatch [37] 13.81±3.37 5.07±0.65 4.26±0.05 48.85±1.75 28.29±0.11 22.60±0.12 3.96±2.17 2.48±0.38 2.28±0.11
CoMatch [18] 6.91±1.39 4.91±0.33 - - - - - - -

GSF 7.73±2.50 4.53±0.11 3.82±0.10 41.96±1.43 26.32±0.33 21.45±0.18 3.16±1.22 2.47±0.18 2.38±0.10
PPF 7.71±3.06 4.84±0.17 3.94±0.14 42.08±1.10 26.42±0.17 21.34±0.13 3.10±0.59 2.50±0.22 2.39±0.12

Table 1. Error rates (%) for CIFAR-10, CIFAR-100, and SVHN.

group is based on either self-training or consistency regu-
larization, i.e., Π-Model, Pseudo-Labeling, Mean Teacher,
and UPS; the second one relies on combining the two tech-
niques, i.e., MixMatch, UDA, ReMixMatch, FixMatch, and
CoMatch. For CIFAR-10, we evaluate on 40, 250, and 4000
label settings; for CIFAR-100 and SVHN, we evaluate on
cases of 4, 25, and 100 labels per class. We compute the
mean and standard deviation of test accuracy over 5 trials
with different sets of labeled data.

The results are reported in Tab. 1, from which we take
several interesting observations below. (1) The methods
in the second group exhibit a clear performance gain over
those in the first group mostly, indicating that the design
of technique combination is reasonable and effective. (2)
The performance gain decreases as the number of labels per
class increases. For example, on CIFAR-10, MixMatch im-
proves over Meach Teacher by 21.27% with 25 labels per
class but only by 2.77% with 400 labels per class. This
is reasonable since the goal of SSL is to learn models that
perform better in cases of fewer labels. (3) By enforc-
ing prediction consistency between weakly- and strongly-
augmented samples, UDA outperforms MixMatch by a sig-
nificant margin on most settings; in particular, with only
4 labels per class, UDA is 18.49% and 8.33% better than
MixMatch on CIFAR-10 and CIFAR-100 respectively. (4)
With distribution alignment and augmentation anchoring,
ReMixMatch performs much better than UDA, e.g., gains
of 9.95%, 15%, and 49.29% on the 40-label setting from
CIFAR-10, CIFAR-100, and SVHN respectively. (5) With-
out distribution alignment to encourage predictions to fol-
low the class distribution of labeled data, FixMatch is in-
ferior to ReMixMatch, i.e., decreases of 4.57% and 0.62%
with 4 labels per class on CIFAR-100 and SVHN respec-
tively, despite the gain of 5.29% on CIFAR-10 with 40 la-
beled samples. (6) Our GSF and PPF are substantially bet-
ter than FixMatch, e.g., gains of 6.89% and 6.77% with
4 labels per class, 1.97% and 1.87% with 25 labels per
class, and 1.15% and 1.26% with 100 labels per class on the

challenging CIFAR-100, respectively. It is noteworthy that
without distribution alignment, our methods still largely ex-
ceed ReMixMatch, e.g., by 2.32% and 2.2% on the 400-
label setting from CIFAR-100 respectively, confirming the
effectiveness of our methods on discovering helpful sam-
ples of moderate confidence. (7) With the number of labels
decreased, our methods exhibit an increasing performance
gain over FixMatch on all benchmarks and are comparable
to the state-of-the-art CoMatch, suggesting that the strat-
egy of discovering the effectiveness of moderately confident
samples has the potential to handle label-scarce scenarios.

5. Conlusion and Future Work

In this work, we found that some moderately confi-
dent samples are useful to improve recognition accuracy
for semi-supervised learning (SSL). We pick them out by
gradient synchronization filter or prototype proximity fil-
ter, which are derived from the proposed Taylor expansion
inspired filtration framework. The former can strengthen
the optimization dynamic of fully-supervised learning by
selecting samples whose gradients are similar to class-wise
majority gradients. The latter can enhance the semantic pro-
totypicality of learned feature representation by selecting
samples close to prototypes. Experiments on SSL bench-
marks show that our methods based on FixMatch achieve
significant improvements in accuracy, verifying their effi-
cacy in filtering samples of moderate confidence.

Although our methods as plug-ins incur very little
extra cost, FixMatch-like methods themselves are time-
consuming. It discourages research groups with limited
GPU resources from advancing research. A possible so-
lution is to build an international idle resource dynamic
scheduling platform by the conference organizer.
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and R. Garnett, editors, NeurIPS, volume 32. Curran Asso-
ciates, Inc., 2019. 2

[21] Yucen Luo, Jun Zhu, Mengxi Li, Yong Ren, and Bo Zhang.
Smooth neighbors on teacher graphs for semi-supervised
learning. In CVPR, pages 8896–8905, 2018. 1

[22] David McClosky, Eugene Charniak, and Mark Johnson. Ef-
fective self-training for parsing. In Proceedings of the Main
Conference on Human Language Technology Conference of
the North American Chapter of the Association of Computa-
tional Linguistics, page 152–159, 2006. 2

[23] G. J. McLachlan. Iterative reclassification procedure for con-
structing an asymptotically optimal rule of allocation in dis-
criminant analysis. Journal of the American Statistical As-
sociation, 70:365–369, 1975. 3

[24] Takeru Miyato, Shin-Ichi Maeda, Masanori Koyama, and
Shin Ishii. Virtual adversarial training: A regularization
method for supervised and semi-supervised learning. IEEE
TPAMI, 41:1979–1993, 2019. 1, 3

[25] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. In Workshop of
Proc. Neur. Info. Proc. Sys., 2011. 6

[26] Avital Oliver, Augustus Odena, Colin Raffel, Ekin D.
Cubuk, and Ian J. Goodfellow. Realistic evaluation of
deep semi-supervised learning algorithms. In NeurIPS, page
3239–3250, 2018. 1, 3

[27] Y. Pan, T. Yao, Y. Li, Y. Wang, C. Ngo, and T. Mei.
Transferrable prototypical networks for unsupervised do-
main adaptation. In CVPR, pages 2234–2242, 2019. 4, 5

[28] Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V. Le. Meta
pseudo labels. In CVPR, pages 11557–11568, June 2021. 2

[29] Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias
Berglund, and Tapani Raiko. Semi-supervised learning with
ladder networks. In NeurIPS, page 3546–3554, 2015. 1, 2, 8

[30] Mengye Ren, Sachin Ravi, Eleni Triantafillou, Jake Snell,
Kevin Swersky, Josh B. Tenenbaum, Hugo Larochelle, and
Richard S. Zemel. Meta-learning for semi-supervised few-
shot classification. In ICLR, 2018. 2

[31] Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat,
and Mubarak Shah. In defense of pseudo-labeling: An



uncertainty-aware pseudo-label selection framework for
semi-supervised learning. In ICLR, 2021. 1, 2, 8

[32] Chuck Rosenberg, Martial Hebert, and Henry Schneiderman.
Semi-supervised self-training of object detection models. In
Seventh IEEE Workshops on Applications of Computer Vi-
sion, volume 1, pages 29–36, 2005. 2

[33] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.
Regularization with stochastic transformations and perturba-
tions for deep semi-supervised learning. In NeurIPS, vol-
ume 29, 2016. 1, 2, 3

[34] H. Scudder. Probability of error of some adaptive pattern-
recognition machines. IEEE Transactions on Information
Theory, 11:363–371, 1965. 3

[35] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-
tra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In ICCV, pages 618–626, 2017.
7

[36] Jake Snell, Kevin Swersky, and Richard Zemel. Proto-
typical networks for few-shot learning. In NeurIPS, page
4080–4090, 2017. 2, 4, 5

[37] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk,
Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying
semi-supervised learning with consistency and confidence.
In NeurIPS, volume 33, pages 596–608, 2020. 1, 2, 3, 4, 5,
6, 8

[38] Antti Tarvainen and Harri Valpola. Mean teachers are bet-
ter role models: Weight-averaged consistency targets im-
prove semi-supervised deep learning results. In NeurIPS,
volume 30, 2017. 1, 2, 8

[39] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journ. of Mach. Learn. Res., 9:2579–2605,
2008. 5

[40] J.E. van Engelen and H.H Hoos. A survey on semi-
supervised learning. Mach. Learn., 109:373–440, 2020. 1,
2, 3

[41] Yulin Wang, Jiayi Guo, Shiji Song, and Gao Huang. Meta-
semi: A meta-learning approach for semi-supervised learn-
ing. CoRR, abs/2007.02394, 2020. 2, 8

[42] Colin Wei, Kendrick Shen, Yi ning Chen, and Tengyu Ma.
Theoretical analysis of self-training with deep networks on
unlabeled data. In ICLR, 2021. 1, 2, 4

[43] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised
deep embedding for clustering analysis. In Proc. Int. Conf.
Mach. Learn., pages 478–487, 2016. 5

[44] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and
Quoc Le. Unsupervised data augmentation for consistency
training. In NeurIPS, volume 33, pages 6256–6268, 2020. 1,
3, 4, 8

[45] Shaoan Xie, Zibin Zheng, Liang Chen, and Chuan Chen.
Learning semantic representations for unsupervised domain
adaptation. In Proc. Int. Conf. Mach. Learn., pages 5419–
5428, 2018. 5

[46] Xin-She Yang. Chapter 1 - introduction to algorithms. In
Xin-She Yang, editor, Nature-Inspired Optimization Algo-
rithms, pages 1–21. Elsevier, Oxford, 2014. 4

[47] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In BMVC, 2016. 1, 6

[48] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jin-
dong Wang, Manabu Okumura, and Takahiro Shinozaki.
Flexmatch: Boosting semi-supervised learning with curricu-
lum pseudo labeling. In A. Beygelzimer, Y. Dauphin, P.
Liang, and J. Wortman Vaughan, editors, NeurIPS, 2021. 1,
3

[49] Liheng Zhang and Guo-Jun Qi. Wcp: Worst-case pertur-
bations for semi-supervised deep learning. In CVPR, pages
3911–3920, 2020. 1, 2

[50] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset
condensation with gradient matching. In ICLR, 2021. 2, 4

[51] Yang Zou, Zhiding Yu, B. V. K. Vijaya Kumar, and Jinsong
Wang. Unsupervised domain adaptation for semantic seg-
mentation via class-balanced self-training. In ECCV, pages
297–313, 2018. 4


