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Abstract

Unsupervised domain adaptation (UDA) is to make pre-
dictions for unlabeled data on a target domain, given la-
beled data on a source domain whose distribution shifts
from the target one. Mainstream UDA methods learn
aligned features between the two domains, such that a clas-
sifier trained on the source features can be readily applied
to the target ones. However, such a transferring strategy
has a potential risk of damaging the intrinsic discrimina-
tion of target data. To alleviate this risk, we are motivated
by the assumption of structural domain similarity, and pro-
pose to directly uncover the intrinsic target discrimination
via discriminative clustering of target data. We constrain
the clustering solutions using structural source regulariza-
tion that hinges on our assumed structural domain similar-
ity. Technically, we use a flexible framework of deep net-
work based discriminative clustering that minimizes the KL
divergence between predictive label distribution of the net-
work and an introduced auxiliary one; replacing the auxil-
iary distribution with that formed by ground-truth labels of
source data implements the structural source regularization
via a simple strategy of joint network training. We term our
proposed method as Structurally Regularized Deep Cluster-
ing (SRDC), where we also enhance target discrimination
with clustering of intermediate network features, and en-
hance structural regularization with soft selection of less
divergent source examples. Careful ablation studies show
the efficacy of our proposed SRDC. Notably, with no explicit
domain alignment, SRDC outperforms all existing methods
on three UDA benchmarks.

1. Introduction

Given labeled data on a source domain, unsupervised do-
main adaptation (UDA) is to make predictions in the same
label space for unlabeled data on a target domain, where
there may exist divergence between the two domains. Main-
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stream methods are motivated by the classic UDA theories
[2, 3, 40] that specify the learning bounds involving domain
divergences, whose magnitudes depend on the feature space
and the hypothesis space of classifier. Consequently, these
methods (e.g., those recent ones based on adversarial train-
ing of deep networks [16, 48]) strive to learn aligned fea-
tures between the two domains, such that classifiers trained
on the source features can be readily applied to the tar-
get ones. In spite of impressive results achieved by these
methods, they have a potential risk of damaging the intrin-
sic structures of target data discrimination, as discussed in
[9, 50, 69]. Attempts are made in [9, 50] to alleviate this
risk, however, explicit domain alignments are still pursued
in their proposed solutions.

To address this issue, we first instantiate the general as-
sumption of domain closeness in UDA problems [2, 50] as
structural domain similarity, which spells as two notions of
domain-wise discrimination and class-wise closeness — the
former notion assumes the existence of intrinsic structures
of discriminative data clusters in individual domains, and
the later one assumes that clusters of the two domains cor-
responding to the same class label are geometrically close.
This assumption motivates us to consider a UDA approach
that directly uncovers the intrinsic data discrimination via
discriminative clustering of target data, where we propose
to constrain the clustering solutions using structural source
regularization hinging on our assumed structural similarity.

Among various deep network based clustering algo-
rithms [4, 8, 14, 61], we choose a simple but flexible non-
generative framework [14], which performs discriminative
clustering by minimizing the KL divergence between pre-
dictive label distribution of the network and an introduced
auxiliary one. Structural source regularization is simply
achieved via a simple strategy of joint network training,
by replacing the auxiliary distribution with that formed
by ground-truth labels of source data. We term our pro-
posed method as Structurally Regularized Deep Clustering
(SRDC). In SRDC, we also enhance target discrimination
with clustering of intermediate network features, and en-
hance structural regularization with soft selection of less
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divergent source examples. We note that quite a few re-
cent UDA methods [13, 27, 41, 51] consider clustering of
target data as well; however, they still do explicit feature
alignment between the two domains via alignment of clus-
ter centers/samples, thus prone to the aforementioned risk
of damaged intrinsic target discrimination. Experiments on
benchmark UDA datasets show the efficacy of our proposed
SRDC. We finally summarize our contributions as follows.

e To address a potential issue of damaging the intrin-
sic data discrimination by explicitly learning domain-
aligned features, we propose in this work a source-
regularized, deep discriminative clustering method in
order to directly uncover the intrinsic discrimination
among target data. The method is motivated by our
assumption of structural similarity between the two
domains, for which we term the proposed method as
Structurally Regularized Deep Clustering (SRDC).

e To technically achieve SRDC, we use a flexible deep
clustering framework that first introduces an auxiliary
distribution, and then minimizes the KL divergence be-
tween the introduced one and the predictive label dis-
tribution of the network; replacing the auxiliary distri-
bution with that of ground-truth labels of source data
implements the structural source regularization via a
simple strategy of joint network training. In SRDC,
we also design useful ingredients to enhance target
discrimination with clustering of intermediate network
features, and to enhance structural regularization with
soft selection of less divergent source examples.

e We conduct careful ablation studies on benchmark
UDA datasets, which verify the efficacy of individual
components proposed in SRDC. Notably, with no ex-
plicit domain alignment, our proposed SRDC outper-
forms all existing methods on the benchmark datasets.

2. Related works

Alignment based domain adaptation. A typical line of
works [16, 43, 53, 63] leverages a domain-adversarial task
to align the source and target domains as a whole so that
class labels can be transferred from the source domain to
the unlabeled target one. Another typical line of works di-
rectly minimizes the domain shift measured by various met-
rics, e.g., maximum mean discrepancy (MMD) [34, 36, 37].
These methods are based on domain-level domain align-
ment. To achieve class-level domain alignment, the works
of [35, 42] utilize the multiplicative interaction of feature
representations and class predictions so that the domain
discriminator can be aware of the classification boundary.
Based on the integrated task and domain classifier, [52] en-
courages a mutually inhibitory relation between category
and domain predictions for any input instance. The works of

[7, 13,41, 59] align the labeled source centroid and pseudo-
labeled target centroid of each shared class in the feature
space. Some works [31, 47, 48] use individual task classi-
fiers for the two domains to detect non-discriminative fea-
tures and reversely learn a discriminative feature extractor.
Some works [30, 56, 57] focus attention on transferable re-
gions to derive a domain-invariant classification model. To
help achieve target-discriminative features, [28, 49] gener-
ate synthetic images from the raw input data of the two do-
mains via GANs [19]. The recent work of [9] improves ad-
versarial feature adaptation, where the discriminative struc-
tures of target data may be deteriorated [69]. The work of
[60] adapts the feature norms of the two domains to a large
range of values so that the learned features are not only task-
discriminative but also domain-invariant.

Clustering based domain adaptation. The cluster as-
sumption states that the classification boundary should not
pass through high-density regions, but instead lie in low-
density regions [6]. To enforce the cluster assumption, con-
ditional entropy minimization [20, 32] is widely used in the
UDA community [11, 44, 45, 50, 51, 60, 64, 68]. The work
of [27] adopts the spherical {-means to assign target labels.
The recent work of [13] employs a Fisher-like criterion
based deep clustering loss [38]. However, they use target
clustering just as an incremental technique to improve ex-
plicit feature alignment. The previous work of [50] is based
on the clustering criterion of mutual information maximiza-
tion, which still explicitly forces domain alignment. In con-
trast, with no explicit domain alignment, SRDC aims to un-
cover the intrinsic target discrimination by discriminative
target clustering with structural source regularization.
Latent domain discovery. Methods of latent domain dis-
covery [10, 18, 22, 39] focus on capturing latent structures
of the source, target data or a mixed one under the assump-
tion that data may practically comprise multiple diverse dis-
tributions. Our proposed SRDC shares the same motivation
with these methods, but differs in the aim to uncover the
intrinsic discrimination among target classes by structurally
source regularized deep discriminative target clustering, in
a distinctive perspective of utilizing structural similarity be-
tween the source and target domains.

3. The strategies of transferring versus uncov-
ering the intrinsic target discrimination

Consider a source domain & with n labeled examples
{(z$,y;)};2,, and a target domain 7 with n; unlabeled ex-
amples {z!}!,. Unsupervised domain adaptation (UDA)
assumes a shared label space ) between S and 7. Let
|Y| = K and we have y* € {1,2,..., K} for any source
instance x°. The objective of transductive UDA 1is to pre-
dict {9t} of {a!}* by learning a feature embedding

function ¢ : X — Z that lifts any input instance £ € X to
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the feature space Z, and a classifier f : Z — RX. Subtly
different from transductive UDA, inductive UDA is to mea-
sure performance of the learned ¢(-) and f(-) on held-out
instances sampled from the same 7. This subtle difference
is in fact important since we expect to use the learned ¢(-)
and f(-) as off-the-shelf models, and we expect them to be
consistent when learning with different source domains.

Domain closeness is generally assumed in UDA either
theoretically [2, 40] or intuitively [50]. In this work, we
summarize the assumptions in [50] as the structural sim-
ilarity between the source and target domains, which in-
clude the following notions of domain-wise discrimination
and class-wise closeness, as illustrated in Figure 1.

e Domain-wise discrimination assumes that there exist
intrinsic structures of data discrimination in individ-
ual domains, i.e., data in either source or target do-
mains are discriminatively clustered corresponding to
the shared label space.

e Class-wise closeness assumes that clusters of the two
domains corresponding to the same class label are ge-
ometrically close.

Based on these assumptions, many of exiting works [16,
35,42, 48, 53, 66] take the transferring strategy of learning
aligned feature representations between the two domains,
such that classifiers trained on source features can be read-
ily applied to the target ones. However, such a strategy has
a potential risk of damaging the intrinsic data discrimina-
tion on the target domain, as discussed in recent works of
[9, 50, 69]. An illustration of such damage is also given in
Figure 1. We note that more importantly, classifiers adapt-
ing to the damaged discrimination of target data would be
less effective for tasks of inductive UDA, since they deviate
too much from the oracle target classifier, i.e. an ideal one
trained on the target data with the ground-truth labels.

Based on the above analysis, we are motivated to directly
uncover the intrinsic target discrimination via discrimina-
tive clustering of target data. To leverage the labeled source
data, we propose to constrain the clustering solutions using
structural source regularization that hinges on our assumed
structural similarity across domains. Section 4 presents de-
tails of our method, with an illustration given in Figure 1.
We note that quite a few recent methods [13, 27, 41, 51]
consider clustering of target data as well; however, they still
do explicit feature alignment across domains via alignment
of cluster centers/samples, thus prone to the aforementioned
risk of damaged intrinsic target discrimination.

4. Discriminative target clustering with struc-
tural source regularization

We parameterize the feature embedding function ¢(+; 6)
and classifier f(-;9) as a deep network [21, 25, 26, 65],

(a) (b) ()
Source Target Class 1 Class 2

Figure 1. (Best viewed in color.) (a) Illustration of the assumption
of structural domain similarity (cf. Section 3). The orange line de-
notes the classifier trained on the labeled source data and the green
one denotes the classifier trained on the labeled target data, i.e. the
oracle target classifier. (b) Illustration of damaging intrinsic struc-
tures of data discrimination on the target domain by the existing
transferring strategy. The dashed line denotes the source classifier
adapting to the damaged discrimination of target data, which has
a sub-optimal generalization. (c) Illustration of our proposed un-
covering strategy. Discriminative target clustering with structural
source regularization uncovers intrinsic target discrimination.

where {6,9} collects the network parameters. We also
write them as ¢(-) and f(-) for simplicity, and use f o ¢
to denote the whole network. For an input instance x, the
network computes feature representation z = ¢(x), and
outputs a probability vector p = softmax(f(z)) € [0, 1]¥
after the final softmax operation.

As discussed in Section 3, in order to uncover the intrin-
sic discrimination of the target domain, we opt for direct
clustering of target instances with structural regularization
from the source domain. Among various clustering methods
[4, 8, 14, 61], we choose a flexible framework of deep dis-
criminative clustering [14], which minimizes the KL diver-
gence between predictive label distribution of the network
and an introduced auxiliary one; by replacing the auxiliary
distribution with that of ground-truth labels of source data,
we easily implement the structural source regularization
via a simple strategy of network joint training, for which
we term our proposed method as Structurally Regularized
Deep Clustering (SRDC). In SRDC, we also enhance tar-
get discrimination with clustering of intermediate network
features, and enhance structural regularization with soft se-
lection of less divergent source examples.

4.1. Deep discriminative target clustering

For the unlabeled target data {@!}!*,, the network

predicts, after softmax operation, the probability vectors
{p}i, that we collectively write as P*. We also write as
pl ), the k™" element of p! for the target instance xf. P*
thus approximates the predictive label distribution of the
network for samples of 7. Similar to [14, 24], we first intro-
duce an auxiliary counterpart Q?, and the proposed SRDC
then alternates in (1) updating Q?, and (2) using the up-
dated Q" as labels to train the network to update parameters
{0, 9}, which optimizes the following objective of deep
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discriminative clustering

K
oBin, Liop = KL(Q'|IPY) + > oilogol, (1)
k=1
where o = % i1 4} ;, and the second term in (1) is used
to balance cluster assignments in {q!}*;, — otherwise de-
generate solutions would be obtained that merge clusters by
removing cluster boundaries [29]. In addition, it encourages
entropy maximization of the label distribution on the target
domain, i.e., encouraging cluster size balance. In aware of
the lack of prior knowledge about target label distribution,
we simply rely on the second term to account for a uniform
one. The first term computes the KL divergence between

discrete probability distributions P* and Q! as

ZZ%

zlkrl

KL(Q'||P") =

More specifically, the optimization of objective (1) takes the
following alternating steps.

e Auxiliary distribution update. Fix network parame-
ters {6,9} (and {p!}*, of target instances are fixed
as well). By setting the approximate gradient of (1) as
zero, we has the following closed-form solution [14]

pl k/(Z 1= 11%/ k)
Zkle piJc’/(Zi’:l Pir )2
e Network update. By fixing Q?, this step is equivalent

to training the network via a cross-entropy loss using
Q! as labels, giving rise to

mlnf—ZZqzklogplk 3)

i=1 k=1

G = )

In this work, we also enhance uncovering of target
discrimination via discriminative clustering in the feature
space Z. More specifically, let {p1;}5_, be the learnable
cluster centers of both the source and target data in the space
Z. We follow [58] and define a probability vector p! of
soft cluster assignments of the instance feature z! = ¢(xt)
based on instance-to-center distances in the space Z, whose
kth element is defined as

O (L 1 M
T Xorexp((L+lzf = e l?)7)

We write {p!} 1", collectively as P'. By introducing a cor-

responding auxiliary distribution Qt, we have the following
objective of deep discriminative clustering in the space Z

K
_min LY =KL(Q'P) + Y ghlogd, ()
Qt797{“2}§:1 k=1

where g}, = ;L >, G} ;. The objective (5) can be op-
timized in the same alternating fashion as for (1), by de-
riving formulations similar to (2) and (3), where we note
that features {z!}!'*, are computed with the updated net-
work parameters 6, and we also re-initialize {px}i | at
the start of each training epoch based on the current clus-
ter ass1gnments of {2}, (together with labeled source
{27150 { i} | are continuously updated during train-
ing 1terat10ns of each epoch via back-propagated gradients
of (5).

Combining (1) and (5) gives our objective of deep dis-
criminative target clustering, which will be used as the first
term of our overall objective of SRDC algorithm

min Lt — L+ L.
Qt7ét7{07,‘9}’{“k}£{ ) SRDC fop A ©)

Remarks. Given unlabeled target data alone, the objective
(1) itself is not guaranteed to has sensible solutions to un-
cover the intrinsic discrimination of target data, since the
auxiliary distribution Q* could be arbitrary whose optimiza-
tion is subject to no proper constraints. Incorporation of
(5) into the overall objective (6) would alleviate the issue
by soft assignments of {z!}!", to properly initialized clus-
ter centers {p } 2. To guarantee sensible solutions, deep
clustering methods [14, 58] usually employ an additional
reconstruction loss as a data-dependent regularizer. In our
proposed SRDC for domain adaptation, the following intro-
duced structural source regularization serves a similar pur-
pose as that of the reconstruction ones used in [14, 58].

4.2. Structural source regularization

Based on the UDA assumption made in Section 3 that
specifies the structural similarity between the source and
target domains, we propose to transfer the global, discrimi-
native structure of labeled source data via a simple strategy
of jointly training the same network f o . Note that the K-
way classifier f defines hyperplanes that partition the fea-
ture space Z into regions, of which K ones are uniquely
responsible for the K classes. Since the two domains share
the same label space, joint training would ideally push in-
stances of the two domains from same classes into same re-
gions in Z, thus implicitly achieving feature alignment be-
tween the two domains. Figure 1 gives an illustration.

Technically, for the labeled source data {(z3,y;)}72,
we simply replace the auxiliary distribution in (1) with that
formed by the ground-truth labels {y5}” j=1, resulting in a
supervised network training via cross-entropy minimization

Ns

12 1k

J:l k=1

min L5

0.9 fop — logp] k> (7)

where p? . is the kth element of the predictive probability
vector p? of source instance %, and I[] is the function of
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indicator. We also enhance source discrimination in the fea-
ture space Z, in parallel with (5), resulting in

min_ L5 = —— §:§:I —yllogBl.  ®)

K n
0. {pr};_, 5 i1 k=1

where

. exp((1+ [|z5 — px]?) 7!
B = =z R )
Zk’:l eXp((l + sz - Nk’|| ) )

Combining (7) and (8) gives the training objective using la-
beled source data

min Lérpe = Lo, + L5
(0.0} {piyic T ORPC T IR T e (10)
Using (10) as the structural source regularizer, we have
our final objective of SRDC algorithm

~ min Lsrpe = Lirpe + ALrpe, (11)
Qt,Qt{0,9} {mr}f_,

where ) is a penalty parameter.
4.3. Enhancement via soft source sample selection

It is commonly hypothesized in transfer learning [23, 62]
that importance of source samples varies for learning trans-
ferable models. A simple strategy to implement this hypoth-
esis is to re-weight source instances based on their similari-
ties to target ones [7, 17, 67]. In this work, we also employ
this strategy into SRDC.

Specifically, let {cl, € Z}X | be the K target cluster
centers in the feature space. For any labeled source example
(z®,y°), we compute its similarity to CZS, i.e., the target
center of cluster y°, based on the following cosine distance

Loy S N opny a
2 |\Cy|||| | T

We compute {ci}le once every epoch during network
training. Note that {c} }/, are different from {p}5
in (4) and (9), which are cluster centers of both the source
and target data that are continuously updated during train-
ing iterations of each epoch. We compute weights for all
{(a;j, yjs)};‘zl using (12), and enhance (7) and (8) using the
following weighted version of objectives

1
Z@ZI—%mmﬂﬁ
] 1

w®(x®) =

Lhop(stusyre,)

L3 ctwsyen) Zw ZIk_yJ log P55 (14)
j 1

Experiments in Section 5 show that SRDC based on the
above weighted objectives achieves improved results.

5. Experiments
5.1. Setups

Office-31 [46] is the most popular real-world benchmark
dataset for visual domain adaptation, which contains 4, 110
images of 31 classes shared by three distinct domains:
Amazon (A), Webcam (W), and DSLR (D). We evaluate
all methods on all the six transfer tasks.

ImageCLEF-DA [1]is a benchmark dataset with 12 classes
shared by three domains: Caltech-256 (C), ImageNet
ILSVRC 2012 (I), and Pascal VOC 2012 (P). There are 50
images in each class and 600 images in each domain. We
evaluate all methods on all the six transfer tasks.
Office-Home [55] is a more challenging benchmark
dataset, with 15,500 images of 65 classes shared by four
extremely distinct domains: Artistic images (Ar), Clip Art
(Cl), Product images (Pr), and Real-World images (Rw).
We evaluate all methods on all the twelve transfer tasks.
Implementation details. We follow the standard proto-
col for UDA [16, 33, 35, 48, 60] to use all labeled source
samples and all unlabeled target samples as the training
data. For each transfer task, we use center-crop target do-
main images for reporting results and report the classifica-
tion result of mean(=£std) over three random trials. We
use the ImageNet [12] pre-trained ResNet-50 [21] as the
base network, where the last FC layer is replaced with
the task-specific FC layer(s) to parameterize the classifier
f(-). We implement our experiments in PyTorch. We fine-
tune from the pre-trained layers and train the newly added
layer(s), where the learning rate of the latter is 10 times that
of the former. We adopt mini-batch SGD with the learn-
ing rate schedule as [16]: the learning rate is adjusted by
np, = no(1l 4+ ap)~?, where p is the process of training
epochs normalized to be in [0,1], and ny = 0.001,a =
10, 8 = 0.75. We follow [16] to increase A from 0 to 1 by
Ay = 2(1 + exp(—7yp))~* — 1, where v = 10. The other
implementation details are provided in the supplemtary ma-
terial. The code is available at https://github.com/
huitangtang/SRDC-CVPR2020.

5.2. Ablation studies and analysis

Ablation study. To investigate the effects of individual
components of our proposed SRDC, we conduct ablation
studies using Office-31 based on ResNet-50 by evaluat-
ing several variants of SRDC: (1) Source Model, which
fine-tunes the base network on labeled source samples; (2)
SRDC (w/o structural source regularization), which fine-
tunes a source pre-trained model using (6), i.e. without
structural source regularization; (3) SRDC (w/o feature
discrimination), which denotes training without source and
target discrimination in the feature space Z; (4) SRDC (w/o
soft source sample selection), which denotes training with-
out enhancement via soft source sample selection. The re-
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| Method | AW | A—-D [ DA | WA [ Avg |
Source Model 77.8+£0.2 | 82.1£0.2 | 64.5+0.2 | 66.1+£0.2 | 72.6
SRDC (w/o structural source regularization) | 87.3+0.0 | 92.1£0.1 | 73.9£0.1 | 75.0+0.1 | 82.1
SRDC (w/o feature discrimination) 942404 | 943404 | 74.3+£0.2 | 75.5+0.4 | 84.6
SRDC (w/o soft source sample selection) 94.8+0.2 | 94.6+0.3 | 74.6£0.3 | 75.7+£0.3 | 84.9
SRDC 95.7+0.2 | 95.8+0.2 | 76.7+0.3 | 77.1+0.1 | 86.3

Table 1. Ablation studies using Office-31 based on ResNet-50. Please refer to the main text for how different methods are defined.

/ Target Domain (A) \/ Source Domain (W) \

I 0.9421 I 0.8612
| /
> ‘
. 0.8349 %

G ull)

Figure 2. The images on the left are randomly sampled from the
target domain A and those on the right are the top-ranked (the 3"¢
column) and bottom-ranked (the 4th column) samples from the
source domain W for three classes. Note that the red numbers are
the source weights computed by (12).

back_pack

monitor

projector

>

| Method [ASW ] A—SD[D—=A[ WA Avg |
Source Model [ 793 [ 81.6 | 63.1 | 657 [ 724

DANN [16] 80.8 82.4 66.0 64.6 | 73.5
MCD [48] 86.5 86.7 72.4 70.9 79.1
SRDC 91.9 91.6 75.6 75.7 | 83.7

Oracle Model 98.8 97.6 87.8 87.8 93.0

Table 2. Comparative experiments under inductive UDA setting.

sults are reported in Table 1. We can observe that when
any one of our designed components is removed, the per-
formance degrades, verifying that (1) both feature discrim-
ination and structural source regularization are effective for
improving target clustering; (2) the proposed soft source
sample selection scheme leads to better regularization.

Source refinement. To affirm that our proposed soft
source sample selection scheme can select more transfer-
able source samples, we show the images randomly sam-
pled from the target domain A, and the top-ranked and
bottom-ranked samples from the source domain W in Fig-
ure 2. Here, the red numbers are the source weights com-
puted by (12). We can observe that (1) the lowest weight
is more than 0.5, which is reasonable since all source sam-
ples are related to the target domain in that the two domains
share the same label space; (2) the highest weight is less
than 1, which is reasonable since there exists distribution

shift between the two domains; (3) the source images with a
canonical viewpoint have the higher weights than those with
top-down, bottom-up, and side viewpoints, which is intu-
itive since all target images are shown only from a canonical
viewpoint [46]. The above observations affirm the rational-
ity of our proposed soft source sample selection scheme.
Comparison under inductive UDA setting. To verify that
our proposed strategy of uncovering the intrinsic target dis-
crimination can derive the clustering solutions closer to the
oracle target classifier than the existing transferring strategy
of learning aligned feature representations between the two
domains [16, 48], we design comparative experiments un-
der the setting of inductive UDA. We follow a 50%/50%
split scheme to divide each domain of Office-31 into the
training and test sets. We use the both labeled sets of the
source domain and the unlabeled training set of the target
domain as the training data. In Table 2, we report results on
the test set of the target domain using the best-performing
model on the target training set. Here, Oracle Model fine-
tunes the base network on the labeled target training set.
We can see that our proposed uncovering strategy SRDC
achieves closer results to Oracle Model, verifying the moti-
vation of this work and the efficacy of our proposed SRDC.
Feature visualization. We utilize t-SNE [54] to visualize
embedded features on the target domain by Source Model
and SRDC for two reverse transfer tasks of A—W and
W—A in Figure 3. We can qualitatively observe that com-
pared to Source Model, the target domain features can be
much better discriminated by SRDC, which is based on data
clustering to uncover the discriminative data structures.
Confusion matrix. We give confusion matrixes in terms of
accuracy achieved by Source Model and SRDC on two re-
verse transfer tasks of A—W and W—A in Figure 4. Simi-
lar to the qualitative result of Figure 3, we can observe quan-
titative improvements from Source Model to SRDC, further
confirming the advantages of SRDC.

Convergence performance. We verify the convergence
performance of Source Model and SRDC with the test er-
rors on two reverse transfer tasks of A—W and W—A in
Figure 5. We can observe that SRDC enjoys faster and
smoother convergence performance than Source Model.

5.3. Comparisons with the state of the art

Results on Office-31 based on ResNet-50 are reported in
Table 3, where results of existing methods are quoted from
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(a) Source Model: A—W (b) SRDC: A—~W

(c) Source Model: W—A (d) SRDC: W—A

Figure 3. The t-SNE visualization of embedded features on the target domain. Note that different classes are denoted by different colors.

(a) Source Model: A—W (b) SRDC: A—>W

(c) Source Model: W—A (d) SRDC: W—A

Figure 4. The confusion matrix on the target domain. (Zoom in to see the exact class names!)

0.50 ) --- Source Model (A » W)
| — SRDC (A W)

0.45 --- Source Model (W - A)
w — SRDC (W A)

0.40
035

50.30

0

L 0.25

]

£ 0.20
0.15
0.10
0.05
0.00

0 25 50 75 100 125 150 175 200
Number of Epochs

Figure 5. Convergence.

their respective papers or the works of [5, 33, 35]. We can
see that SRDC outperforms all compared methods on al-
most all transfer tasks. It is noteworthy that SRDC signifi-
cantly enhances the classification results on difficult transfer
tasks, e.g. A—W and W—A, where the two domains are
quite different. SRDC exceeds the latest work of BSP aim-
ing to improve the discriminability for adversarial feature
adaptation, showing that data clustering could be a more
promising direction for target discrimination.

Results on ImageCLEF-DA based on ResNet-50 are re-
ported in Table 4, where results of existing methods are
quoted from their respective papers or the work of [35].
SRDC achieves much better results than all compared meth-
ods on all transfer tasks and substantially improves the re-

sults on hard transfer tasks, e.g. C—P and P—C, verifying
the efficacy of SRDC on transfer tasks with the source and
target domains of equal size and class balance.

Results on Office-Home based on ResNet-50 are re-
ported in Table 5, where results of existing methods are
quoted from their respective papers or the works of [35, 45].
We can observe that SRDC significantly exceeds all com-
pared methods on most transfer tasks, with still a large room
for improvement. This is reasonable since the four domains
in Office-Home contain more categories, are visually more
different from each other, and have much lower in-domain
classification results [55]. It is inspiring that SRDC largely
improves over the current state-of-the-art method MDD on
such difficult tasks, which underlines the importance of dis-
covering the discriminative structures by data clustering.

6. Conclusion

In this work, motivated by the assumption of structural
domain similarity, we propose a source regularized, deep
discriminative clustering method, termed as Structurally
Regularized Deep Clustering (SRDC). SRDC addresses a
potential issue of damaging the intrinsic data discrimina-
tion by the existing alignment based UDA methods, via di-
rectly uncovering the intrinsic discrimination of target data.
Technically, we use a flexible framework of deep network
based discriminative clustering that minimizes the KL di-
vergence between predictive label distribution of the net-
work and an introduced auxiliary one; replacing the auxil-
iary distribution with that formed by ground-truth labels of
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