
Residual MeshNet: Learning to Deform Meshes for Single-View 3D
Reconstruction

Junyi Pan1, Jun Li2, Xiaoguang Han3, Kui Jia∗1

1School of Electronic and Information Engineering, South China University of Technology
2University of Technology Sydney

3Shenzhen Research Institute of Big Data, the Chinese University of Hong Kong (Shenzhen)
eejypan@mail.scut.edu.cn jun.li@uts.edu.au hanxiaoguang@cuhk.edu.cn kuijia@scut.edu.cn

Abstract

This work presents a novel architecture of deep neu-
ral networks to generate meshes approximating the surface
of a 3D object from a single image. Compared to exist-
ing learning-based 3D reconstruction models, our architec-
ture is characterized by (1) deep mesh deformation stacks
with residual network design, where a simple mesh is trans-
formed to approximate the target surface and undergoes
multiple deformation steps to progressively refine the result
and reduce the residuals, and (2) parallel paths per defor-
mation step, which can exponentially enrich the generated
meshes using deeper structure and more model parameters.
We also propose novel regularization scheme that encour-
ages the meshes to be both globally complementary to cover
the target surface and locally consistent with each other.
Empirical evaluation on benchmark datasets show advan-
tage of the proposed architecture over existing methods.

1. Introduction

In this paper, we address the problem of inferring 3D ge-
ometric information of an object from a single image. The
problem is both challenging and enlightening. Most geo-
metric attributes, including 3D shape, of an object are in-
herently ambiguous given its 2D observation from a single
perspective. Yet human can use prior knowledge to infer
3D information of an object from one picture, which mo-
tivates learning-based 3D reconstruction from a single 2D
observation [28]. There are a few recent attempts in the di-
rection of learning deep models to recover 3D surfaces of
objects, where 3D surfaces are modeled/approximated us-
ing voxel [2, 19, 26], point cloud [5], or mesh [6, 27] based
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Figure 1. Given a single image as input, our method can generate
the corresponding high resolution mesh output.

representations. Among them, point cloud based represen-
tation has avoided the quantization error induced by voxel
based one, and mesh based representation further provides
relations of local neighborhood, which enables piece-wise
planar approximation of the continuous object surface. In
this work, we are interested in learning to generate object
surface meshes from a single image.

Formally speaking, the surface of an object approximates
a 2D manifold embedded in the 3D Euclidean space. As
an approximate modeling of the manifold, a polygon mesh
is defined by vertices, edges between neighbored vertices,
and also faces enclosed by connected edges. Except for
the inverse challenge of inferring 3D information from 2D
observations, it is a challenge of combinatorial optimiza-
tion itself to construct meshes from a given set of vertices
that are assumed to be sampled from the manifold. In
fact, given an underlying manifold, there may exist multi-
ple ways of meshing that approximate the manifold equally
well. Given these challenges, we follow in this work the
compromised problem setting [6] where in addition to the
RGB image, a pre-defined mesh, usually defined in a 2D
coordinate space, is also provided as input of the learning
system. Consequently, learning to generate a mesh of an
object surface amounts to learning a parametrization that
transforms points/vertices in the input mesh onto the sur-
face, where edges and faces of the input mesh are preserved.

The existence of multiple ways of meshing that approx-
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imate an object surface equally well arguably implies that
given a ground-truth mesh, one is not supposed to learn to
generate a mesh that is identical to the ground-truth one;
instead, one is expected to generate one or multiple meshes
that can model the object surface as well as the ground-truth
one does. Learning to generate multiple meshes has the
following appealing advantages: (1) geometrically, these
multiple meshes may serve as complementary piece-wise
planar approximations to local tangent spaces of the man-
ifold/surface, which as a collection can potentially con-
tribute to a finer geometric approximation of the surface;
and (2) topologically, multiple mesh parametrizations are
necessary to generate an object surface of complex struc-
tures, e.g., those with non-disk topologies.

To achieve these advantages, we propose in this paper
a novel, efficient, and effective deep model, termed Resid-
ual MeshNet (ResMeshNet), for generating a collection of
globally complementary and locally consistent meshes from
a single RGB image (see Figure 1). Figure 2 gives an illus-
tration of the architecture. Our proposed ResMeshNet con-
sists of stacked blocks of multi-layer perceptrons (MLPs).
Each block of MLPs is a processing stage. The initial stage
serves as an image encoder [9] that extracts shape features.
Each successive processing stage consists of a single or
multiple MLPs, each of which takes as input a mesh (co-
ordinates of vertices combined with the shape features) and
outputs its deformed version. The output of each stage is a
set of meshes that collectively approximate the target sur-
face. When n > 1 MLPs are used in a block/stage, our
method essentially increases the resulting meshes by a fac-
tor of n. A shortcut connection is used between two succes-
sive blocks, similar to the way in [9]. Our use of shortcut
connections has two benefits: in the forward pass, the short-
cut connection adds (vertex coordinates of) a mesh in the
current block to the output of each of the MLPs in the suc-
cessive block, and consequently each MLP of the succes-
sive block only learns mesh residuals/offsets w.r.t. the one
sent by the shortcut; in the backward pass, the shortcut con-
nection sends training error signals directly to each of the
intermediate blocks of ResMeshNet, resulting in geometri-
cally consistent mesh generation across blocks. Each path
of MLPs from the first stage to the last stage of ResMesh-
Net defines a parametrization that transforms vertices of an
input mesh to the target surface, where the input mesh can
usually be specified easily, e.g., a regular grid tessellating
the 2D unit square as used in [6]. Compared with [6], our
ResMeshNet is also much more efficient in terms of model
complexity since the number of MLPs grows only logrith-
mically with that of the required output meshes.

To train our proposed ResMeshNet, we use Chamfer dis-
tance based objective [5, 6] that encourages the resulting
meshes of an object surface as a whole to be consistent with
vertices of the ground-truth one. Globally geometric com-

plementarity of our method is thus achieved by the com-
pound factors of residual learning and the above training
objective. To achieve locally geometric consistency among
resulting meshes, we additionally propose a regularizer that
aims to make the resulting meshes be consistent with each
other by penalizing the deviations of individual vertices of
any mesh to their respective projections onto the closest
faces of other meshes.

2. Literature Review
Deep neural networks (DNN) have enjoyed intensive re-

search interest recently [12]. DNN-powered machine vision
systems have achieved impressive success [11, 24, 25]. On
the other hand, current machine vision systems cannot rival
biological vision in 3D reconstruction from images, which
is common and useful but challenging due to the informa-
tion loss caused by the perspective projection during the
imaging process. Traditional approach employs a pipeline
that detects feature points in multiple images, followed by
descriptor extraction and matching and reconstruction using
multiple view perspective geometry [8]. Many widely used
feature detectors and descriptors are hand-crafted according
to heuristics such as affine transform invariance [20, 13].
These systems have worked for specific tasks and scenarios
[16]. But there are practical challenges for which heuristic
rules are less obvious and manual improvement or adjust-
ment is difficult to design [29]. Building automatic geom-
etry discovery system has made progress in certain opera-
tions: DNN-based models have been proposed to detect and
encode features from images [14, 15]. Nevertheless, fully
automatic 3D reconstruction from a single-view image re-
mains an open problem [6, 2].

At the technical level, there still lacks a universally ap-
propriate formulation for the 3D reconstruction problem
that readily suits the end-to-end learning paradigm. Impor-
tant design decisions include the representation of the 3D
target, the evaluation criterion to adjust the model, and the
overall network architecture to extract image information
and predict the 3D target.

First, an important choice in designing the model is the
specific format of the reconstruction target, 3D geometry.
An entity in the 3D space has many attributes, and the suit-
able representation depends on which aspects are relevant to
the task. Volumetric models are convenient to express space
occupancy [2]. High-resolution 3D grid is expensive for
computation and storage, for which schemes of generating
voxels with adaptive sizes have been proposed [7, 26, 19]. A
point cloud is another commonly used format to represent a
3D object, consisting of points sampled from the object sur-
face [22]. A set of 3D points is flexible and able to express
complex geometry, easy to produce and facilitates system
implementation. However, the lack of intrinsic structure in
the generated points can make subsequent applications dif-
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ficult. For certain analytic tasks such as object classifica-
tion, there are recent advances in designing DNN especially
tailored to process point clouds [17, 18]. We have cho-
sen to represent a 3D object by using meshes approximat-
ing the surface. Meshes are convenient for rendering and
many other 3D modelling tasks, but less obvious to produce
from an input image . An effective approach is [6], where
a DNN is employed to deform a primitive mesh in the 2D
space (regular grid of the unit 2D square) and produce a 3D
embedding. The method is extensible to multiple meshes.
In [27], one ellipsoid mesh has been deformed and upsam-
pled progressively in a multi-step network, which employs
generalized convolutional neural network [23] to aggregate
features in neighboring vertices.

Training adjusts the network parameters to minimize the
distance between the generated and the ground-truth 3D
models and thus requires a distance metric between two 3D
models. A number of useful criteria are defined in terms
of two point sets sampled from the two 3D models, e.g. F-
score using the notion of precision and recall [10], Cham-
fer distance [5] or Earth Mover’s distance [21]. When the
3D models are of the mesh format, the surface quality can
also be assessed [3]. We use the Chamfer distance to train
our model, as the minimization in the computation of point-
to-set distances globally couples all generated meshes and
encourages complete coverage of the target surface. How-
ever, Chamfer distance does not account for intersections
or gaps between multiple meshes, for which we proposed a
specialized regularizer to improve reconstruction quality.

A characteristic design of the proposed architecture is
that the incremental deformation induced by the shortcut
connection between the earlier and later deformation stages.
The idea of progressive modelling in a hierarchy has been
proven effective [9]. For 3D meshes, [27] employed short-
cut link across the graph (mesh) edges to connect the ver-
tices. While we adopt shortcut to connect vertices belong-
ing to the deformation results of different stages. Note [9]
was proposed as a framework of image classification. We
also adopt the network to encode an image as the shape fea-
tures.

3. Residual MeshNet for Single View 3D Re-
construction

3.1. Problem Definition

Given an image of an object, the target of 3D reconstruc-
tion is the surface of the object. We employ mesh as a dis-
cretized practical representation of the object surface. A
mesh is a specific type of graph with regular arrangement
of the vertices as an array and edges between neighbor-
ing vertices. We consider the 3D reconstruction problem as
formulating deformations of a primitive mesh p(0) consist-
ing of 2D vertices tessellated on ]0, 1[2. Each deformation

maps every vertex in p(0) to a point in the 3D space, while
maintaining the mesh edges between mapped vertices. In
the discussion below, we will mostly refer a mesh to such
a deformed version of p(0) via adding offsets to the ver-
tices. When there is no danger of ambiguity in the context,
mesh may also represent the generic meaning of grid-like
object 3D surface. The goal is to have the deformed meshes
M = ∪kϕk(p(0)) approximate the manifold S, where ϕk
is one deformation map. Formally, consider the recall error
for a point on the target manifold and the precision error for
a point on the deformed meshes respectively,

εR(p) := inf
q∈M
{D(p, q)},p ∈ S (1)

εP (q) := inf
p∈S
{D(p, q)}, q ∈M (2)

where εR(.) and εP (.) are the recall error and precision er-
ror respectively. In practice, a manifold is represented by
finite number of points sampled from it, and the inf{.} take
the minimal value from a finite set. The goal is to construct
the deformation maps {ϕk} to minimize the approximation
errors, e.g. supp{εR(p)} + supq{εP (q)} or E[εR(p)] +
E[εP (q)], where E[·] is the expectation over a set using
some measurement.

3.2. Residual MeshNet: Model

We use stacked deep neural network blocks, Residual
MeshNet (ResMeshNet), to represent the deformation map
from ]0, 1[2 to 3D meshes approximating embedded sur-
face. The deformation is modulated by a single image of
the object. Figure 2 illustrates the overall architecture of a
3-stage reconstruction network. All information about the
shape of the target object is encoded in a shape feature vec-
tor x, which is extracted from the image by an encoder sub-
net. Given x, the cascaded mesh deformation starts from
the vertices in the primitive mesh p(0). As a specific ex-
ample of p(0), we use a primitive mesh of 10×10 vertices
evenly distributed on the 2D unit square. After multiple
stages of parallel and incremental deformation, the network
outputs multiple versions of deformed p(0): ϕ(p(0); θ) 7→
{p(L,1),p(L,2), . . . ,p(L,M)}, where each p(L,·) is a set of
3D points corresponding to a particular deformation of p(0)

and M is the number of total deformations.
Our proposed ResMeshNet consists of stacked blocks of

multi-layer perceptrons (MLPs). Each MLP is composed
of 4 fully-connected layers. The detailed architecture of
MLP is shown in Figure 3. The t-th deformation block
receives the coordinates of 3D vertices (for t≥2) from the
previous block p(t−1) ∈ R3×Nt−1 , where Nt−1 represents
the number of vertices generated by the (t-1)-th block. The
points in p(t−1) are concatenated with the shape feature x
to form the input vectors u(t) to the MLP(s) in the block:
u
(t)
i = [p

(t−1)
i )T ,xT ]T , where i is the index for the point
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Figure 2. Diagram of ResMeshNet Architecture. The figure shows the structure, processing and training workflows of ResMeshNet. The
legend includes the interpretation of some important concepts, such as the shortcut connection making a residual net structure, the multiple
application of Chamfer distance loss LC and the proposed pairwise consistency loss LP . See text for details. This figure is best viewed in
color on a computer screen.

and corresponding input vector. The Block-t can have one
or several MLPs. The j-th MLP in this block transforms
u(t) and produces 3D offset vectors δ(t,j) for the input ver-
tices. The offset δ(t,j) ∈ R3×Nt−1 is of the same size as
the input vertices p(t−1), representing the refinement by the
j-th MLP in block t. The corresponding output vertices is
p(t,j) = p(t−1) + δ(t,j). An individual MLP represents
one deformation step on a particular mesh. Let the num-
ber of MLPs in the block be mt. Then the total output of
block t is the collection of all the deformed vertices sets
p(t) := [p(t,1),p(t,2), . . . ,p(t,mt)]. Note the total number
of vertices will increase by a factor of mt : p

(t) ∈ R3×Nt

and Nt = Nt−1 · mt. In the case shown in Figure 2, we
use 5 MLPs in both the second and third blocks, which in-
crease the number of vertices by 5 at each block. So we
can finally get the output with 2500 vertices. Note that
there is point-wise correspondence in p(t,j) and p(t−1), and
thus each p(t−1) retains the mesh structure inherited from
the primitive mesh p(0) via the chain of transformations
p(0) → p(1) → . . .p(t). When t = 1, the first deforma-
tion block performs the primary deformation, which maps
p(0) to the 3D space and makes the foundation of subse-
quent deformations. As above, the inputs to the MLP are
composed point feature u(0), where an individual u(0)

i is

k=1, s=1 conv1d, f/2

k=1, s=1 conv1d, f

k=1, s=1 conv1d, f/4

k=1, s=1 conv1d, 3

relu

relu

relu

tanh

Figure 3. The Network Architecture of MLP. The number of input
feature channels is denoted as f. k denotes the kernel size and s the
stride.

the concatenation of 2D point p(0)
i and shape feature vector

x.
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For the shape feature vector, it incorporates the image
information that is relevant to the 3D shape of the object.
In theory, a generic image encoder extracting sufficiently
informative x would do. In this study, we adopt a ResNet
trained as an image classifier [9]. Though classification re-
quires discriminative information, which can be different
from the geometric information about the 3D shape in the
image, the extracted image descriptor worked satisfactorily
in our tests. Specialized encoder for 3D reconstruction from
images may further improve the performance.

3.3. Training Objective

The training loss consists of two groups of terms,

L = LC + LP (3)

where LC is the Chamfer distance between the deformed
vertices at each stage, p(t), and a set of points sampled from
the ground-truth surface, q ⊂ S,

LC =

T∑
t=1

(
∑
x∈q

min
y∈p(t)

‖x−y‖22+
∑
y∈p(t)

min
x∈q
‖x−y‖22) (4)

where T is the total number of stages. For each point,
Chamfer distance finds the nearest point in the other point
set, and sums the distances up [5]. Since our final output
consists of multiple deformed meshes, we proposed the sec-
ond group of loss terms, LP , which is imposed on the final-
stage deformation p(T ) to encourage the pair-wise consis-
tency across the meshes

LP (p
(T )) =

∑
p∈p(T )

DP (p, π̂p) · 1[p̂π̂p = p] (5)

where DP (p, π) represents distance metric between a point
p and plane π. The decorator ·̂ has a special meaning of
closest extraterrestrial object. By the term we mean, given
a point p, π̂p represents the closest face (a 2D plane) to
p in the meshes p(T )\{p(T,jp)}, where p ∈ p(T,jp), i.e.
π̂p is the closest face to p from any mesh in p(T ) except
the one to which p belongs. Symmetrically, for a face
π ∈ p(T ), we can find its closest extraterrestrial point p̂π
within p(T )\{p(T,jπ)}. The condition 1[p̂π̂p = p] ensures
LP to only account for mutual closest point-plane pairs. I.e.
the distance between p and π̂p is counted only when p is
also the closest extraterrestrial point for π̂p. Figure 4 illus-
trates how the regularization is calculated. The regularizer
encourages meshes to be consistent to each other in over-
lapped areas.

3.4. Discussion on training and architecture

Loss and regularization for training. These loss terms
have several interesting characteristics:

Figure 4. Illustration of the pairwise consistency regularizer LP .
This figure shows how the proposed pairwise consistency regular-
izer LP in (5) works in a toy example. The red lines link the cross-
mesh mutually nearest point-plane pairs, whose distances are pe-
nalized. The blue links show spurious pairs, where the mutuality
condition in (5) does not hold.

1) Chamfer distance term LC consists of DC(p
(T ),q)

as well as DC(p
(1,...,T−1),q). The later group of terms

aims to improve the agreement between the intermediate de-
formed meshes to the ground-truth manifold. Those inter-
mediate meshes are not part of the final output, thus Cham-
fer distancesDC(p

(1,...,T−1),q) can be considered as train-
ing time regularization that encourages consistency that will
affect all subsequent refinements.

2) Chamfer distance naturally corresponds to the mesh
to manifold approximation error defined in (1) and (2).

3) The pair-wise consistency LP is a regularization term
defined independent of the ground-truth manifold, but en-
courages meshes to be consistent to each other in over-
lapped areas.

Architecture design. The ResMeshNet architecture has a
number of distinctive attributes that facilitate shape estima-
tion. In two successive deformation blocks, the later block
employs any number of MLPs to make further deformation
to the meshes produced by the the earlier block. This block-
wise residual connection has interesting implications.

1) The approximation to the surface manifold is refined
quantitatively: the number of meshes produced by the later
block increases by a factor of mt, the number of MLPs in
the block, compared to the number of meshes given by the
earlier block. Hence the resolution of the approximation
is enhanced in terms of the collection of vertices and faces
in the meshes. The total number of meshes (and vertices
and faces therein) output by the architecture grows expo-
nentially with the MLPs, given the MLPs are reasonably
distributed among the blocks.

2) The approximation is also refined qualitatively: the
later block produces offsets to add on top of the incoming
meshes and aims to move the meshes closer to the target
surface manifold.

A practical system can flexibly use a design that puts
more weight on the two aspects of refinement. For example,
if only one MLP is used in a block, the resolution of the
input and output meshes will be the same and all refinement
is done by the offsets on the vertices predicted by the MLP.
The MLP can have a deep and sophisticated structure with
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A1 A11 A25 A125 wo/Shortcut wo/Reg. ResMeshNet

cabinet 3.11 3.19 3.06 3.10 3.19 3.09 2.96
table 3.36 3.23 3.20 3.23 3.27 3.15 3.08
chair 3.76 3.49 3.49 3.49 3.47 3.49 3.19
bench 2.60 2.35 2.51 2.45 2.30 2.53 2.27

cellphone 2.63 2.52 2.33 2.12 2.10 2.37 2.21
watercraft 2.84 2.62 2.68 2.58 2.54 2.74 2.59
monitor 4.37 4.38 4.87 3.90 4.55 4.34 3.67

car 2.92 2.79 2.73 2.61 2.59 2.68 2.56
couch 3.58 3.29 3.41 3.12 3.23 3.57 3.07

firearm 1.86 1.70 1.42 1.49 1.51 1.45 1.39
lamp 10.46 10.49 9.76 10.12 9.86 9.92 9.46
plane 1.79 1.65 1.64 1.58 1.62 1.71 1.49

speaker 6.16 6.52 6.26 6.02 6.06 6.49 6.65
MEAN 3.62 3.48 3.42 3.37 3.38 3.44 3.23

Table 1. Abalation study results. The table shows effects of various design characteristics of ResMeshNet: the shortcut connection, the
every-stage CD loss and the hierarchical organization of MLPs. The Chamfer distance is in units of 10−3.

many parameters to ensure necessary capacity to model the
optimal adjustment on the existing meshes.

On the other hand, if a simple MLP structure is used. We
can instantiated multiple such MLPs in a block. The hope
is that though the capacity of individual MLP is limited, the
multiple instances of meshes deformed by such MLPs can
address different parts in the target manifold, and improve
the overall approximation.

It is also noteworthy that the each mesh produced by the
final block is the result of a chain of deformations. For ex-
ample, the blue-shaded band indicates a path of deforma-
tion making the parameterization map [4] from the primi-
tive 2D grid mesh to an output mesh approximating a part
on the surface of target surface of a 3D shape. Along the
path, each stage can be viewed as a distributed modelling of
the shape manifold embedding, and the hierarchical com-
position of the stages helps capture rich geometrical struc-
tures using small-sized models, since the number of poten-
tial paths grow exponentially with the number of the stages.
In the sense of modelling mesh deformations, the proposed
architecture realizes the successful principle of deep learn-
ing, namely distributed and hierarchical representation. Our
experiments verify that the proposed model achieves superb
performance using fewer MLPs.

4. Experiments
Datasets We carry out our experiments on the widely used
ShapeNet Core dataset [1]. The dataset includes shapes of
13 object categories, each of which has 1,000˜10,000 in-
stances of an object 3D model and the corresponding ren-
dered images. To make our results comparable with those
of existing methods, we adopt the experiment setup used in
[2, 6].

Architectural Details As shown in Figure 2, our ResMesh-
Net starts with an image encoder and has three stages of
mesh deformation including the primary one. We use the
same image encoder of ResNet-18 as in [6], whose final
FC layer outputs a 1, 024-D shape feature vector. The three
stages/blocks respectively contain n0 = 1, n1 = 5, and
n2 = 5 MLPs for mesh deformation. We also use the
same MLP of 4 FC layers as in [6]. Thus we can finally
get 1 × 5 × 5 = 25 meshes transformed from the prim-
itive 2D mesh. The primitive mesh is a 10 × 10 grid of
vertices regularly sampled from the unit 2D square, and our
final result of surface reconstruction contains 2, 500 3D ver-
tices during training. During inference, we always generate
high resolution meshes with nearly 30, 000 vertices. We re-
strict our model to use 2,500 sample points from the ground-
truth mesh during training to keep the optimization efficient.
Compared to existing methods such as [6], our model com-
plexity has been significantly reduced for a specified gran-
ularity of mesh vertices.
Towards Mesh based Evaluation We follow the literature
and use Chamfer distance (CD) to approximately measure
results of surface reconstruction. CD is defined between
points from the ground-truth mesh and those from the re-
sulting meshes. To be consistent with training, 2, 500 points
from each ground-truth mesh are used for CD evaluation.
In order to approach a mesh based evaluation, we also take
a strategy of sampling more points from the ground-truth
mesh and the resulting mesh, and compute the correspond-
ing CD results. Such results provide better indication of
mesh reconstruction quality.
Results of Controlled Studies
Shortcut Connection To examine the effect of shortcut con-
nections between stages, we devise a model simply by re-
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Input Images ResMeshNet
ResMeshNet 
without Shortcut

ResMeshNet without 
Stage-wise Supervision

ResMeshNet with 
Pairwise consistency loss GroundTruth Mesh

 

Figure 5. Visualization results of ResMeshNet and other controlled experiments.

moving the shortcuts in our ResMeshNet. Results in Table
1.Column-“wo/Shortcut” demonstrate the clear advantage
of using shortcuts.
Stage-wise Supervision Our ResMeshNet produces at each
stage an approximation to the target 3D surface, which en-
ables stage-wise loss computation. We argue that stage-

wise supervision may be beneficial to surface reconstruc-
tion. To investigate, we conduct experiments by training
ResMeshNet with no use of supervision in the intermediate
meshes. Results in Table 1.Column-“wo/Reg.” corroborate
our hypothesis.
MLP Hierarchy The hierarchical structure of ResMesh-
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Net allows to exponentially increase the number of out-
put meshes by linearly increasing that of MLPs. In Ta-
ble 1.Column-A1, A11, A25 and A125, we quantitatively
assess the performance gain of such a MLP hierarchy in
terms of CD results against model complexities. While
our ResMeshNet has the same complexity as that of Atlas-
Net11, our result is much better than theirs.
Mesh Evaluation More sampled points can represent finer
details of a manifold. For test, in order to approach a mesh
based evaluation , we sample more points from the ground-
truth mesh and the resulting mesh to compare ResMesh-
Net and AtlasNet. The results sampling various numbers of
points are shown in Figure 6. The CD-to-sample-number
curves show that ResMeshNet has consistent advantage,
and when more points are sampled, our method enjoys even
more advantage over AtlasNet.
Comparison with Existing Methods We compare our re-
sults with existing methods of PSG and AtlasNet in Table
2. Our results are better than those of these methods. Table
2 also shows that with use of the regularizer (5), the results
degrade slightly. However, the regularizer produces visu-
ally smoother results of mesh reconstruction as shown in
Figure 5.

Figure 6. Results using Different Mesh Evaluation Settings. The
results are on randomly selected 260 shapes from all 13 categories.
Horizontal axis represents the number of 3D points sampled from
ground-truth mesh and resulting mesh. The vertical axis represents
the CD-loss in units of 10−3.

MEAN-CD
PSG 6.09

AtlasNet 3.42
ResMeshNet 3.23

ResMeshNet PR 3.30

Table 2. Mean CD on the ShapeNet Core dataset. ResMeshNet PR
means ResMeshNet with pairwise consistency loss. The Chamfer
distance is in units of 10−3.

5. Conclusion
We have proposed a new deep neural network architec-

ture to generate meshes representing a 3D object, for which
only a single-view observation is available, by progressively
transforming and deforming pre-defined simple meshes to
approximate the object surface. The network consists of
multiple deformation blocks stacked with cross-block short-
cut connections, so the later deformation blocks model the
residuals left by the earlier blocks. Each deformation block
can employ a flexible number of MLPs and potentially in-
crease the number of resulting meshes (by a factor of the
number of MLPs). We also propose a regularization scheme
that encourage the meshes to cooperate globally to approx-
imate the target surface and to be consistent locally. Ex-
tensive empirical study has shown the effectiveness of the
proposed method. Future research can be on explicit coor-
dination between meshes to achieve better global parame-
terization of a surface manifold.
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Mass.). Birkhäuser, 1992. 6

[5] H. Fan, H. Su, and L. J. Guibas. A point set generation net-
work for 3D object reconstruction from a single image. In
CVPR, 2017. 1, 2, 3, 5

[6] T. Groueix, M. Fisher, V. Kim, B. Russell, and M. Aubry.
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