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Abstract

As a basic component of SE(3)-equivariant deep feature learning, steerable con-
volution has recently demonstrated its advantages for 3D semantic analysis. The
advantages are, however, brought by expensive computations on dense, volumetric
data, which prevent its practical use for efficient processing of 3D data that are
inherently sparse. In this paper, we propose a novel design of Sparse Steerable
Convolution (SS-Conv) to address the shortcoming; SS-Conv greatly accelerates
steerable convolution with sparse tensors, while strictly preserving the property
of SE(3)-equivariance. Based on SS-Conv, we propose a general pipeline for
precise estimation of object poses, wherein a key design is a Feature-Steering
module that takes the full advantage of SE(3)-equivariance and is able to con-
duct an efficient pose refinement. To verify our designs, we conduct thorough
experiments on three tasks of 3D object semantic analysis, including instance-level
6D pose estimation, category-level 6D pose and size estimation, and category-
level 6D pose tracking. Our proposed pipeline based on SS-Conv outperforms
existing methods on almost all the metrics evaluated by the three tasks. Abla-
tion studies also show the superiority of our SS-Conv over alternative convolu-
tions in terms of both accuracy and efficiency. Our code is released publicly at
https://github.com/Gorilla-Lab-SCUT/SS-Conv.

1 Introduction

SE(3)-equivariant deep networks [20, 25, 7] have shown the promise recently in some tasks of 3D
semantic analysis, among which 3D Steerable CNN [25] is a representative one. 3D Steerable
CNNs employ steerable convolutions (termed as ST-Conv) to learn pose-equivariant features in
a layer-wise manner, thus preserving the pose information of the 3D input. Intuitively speaking,
for a layer of ST-Conv, any SE(3) transformation (r, t) applied to its 3D input would induce a
pose-synchronized transformation to its output features, where r ∈ SO(3) stands for a rotation and
t ∈ R3 for a translation. Fig. 1 (a) gives an illustration where given an SE(3) transformation of the
input, the locations at which feature vectors are defined are rigidly transformed with respect to (r, t),
and the feature vectors themselves are also rotated by ρ(r) (ρ(r) is a representation of rotation r).
This property of SE(3)-equivariance enables the steerability of feature space. For example, without
transforming the input, SE(3) transformation can be directly realized by steering in the feature space.
To produce steerable features, ST-Conv confines its feature domain to regular grids of 3D volumetric
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Figure 1: An illustration of SE(3)-equivariance achieved by (a) STeerable Convolution (ST-Conv)
based on dense tensors, and (b) our Sparse Steerable Convolution (SS-Conv) based on sparse tensors,
where arrows defined on the 3D fields denote vector-formed, oriented features. Best view in the
electronic version.

data; it can thus be conveniently supported by 3D convolution routines. This compatibility with 3D
convolutions eases the implementation of ST-Conv, but at the sacrifice of efficiently processing 3D
data (e.g., point clouds) that are typically irregular and sparse; consequently, ST-Conv is still less
widely used in broader areas of 3D semantic analysis.

In this paper, we propose a novel design of Sparse Steerable Convolution (SS-Conv) to address
the aforementioned shortcoming faced by ST-Conv. SS-Conv can greatly accelerate steerable con-
volutions with sparse tensors, while strictly preserving the SE(3)-equivariance in feature learning;
Fig. 1 (b) gives the illustration. To implement SS-Conv, we construct convolutional kernels as
linear combinations of basis ones based on spherical harmonics, which satisfy the rotation-steerable
constraint of SE(3)-equivariant convolutions [25], and implement the convolution as matrix-matrix
multiply-add operations on GPUs only at active sites, which are recorded along with their features as
sparse tensors.

Although SE(3)-equivariant feature learning is widely used in 3D object recognition, its potentials
for other tasks of 3D semantic analysis have not been well explored yet. In this work, we make the
attempt to apply our proposed SS-Conv to object pose estimation in 3D space. To this end, we propose
a general pipeline based on SS-Conv, which stacks layers of SS-Conv as the backbone, and decodes
object poses directly from the learned SE(3)-equivariant features. A novel Feature-Steering module
is also designed into the pipeline to support iterative pose refinement, by taking advantage of the
steerability of the learned features. We conduct thorough experiments on three tasks of pose-related,
3D object semantic analysis, including instance-level 6D pose estimation, category-level 6D pose
and size estimation, and category-level 6D pose tracking. Our proposed pipeline based on SS-Conv
outperforms existing methods on almost all the metrics evaluated by the three tasks; the gaps are
clearer in the regimes of high-precision pose estimation. Ablation studies also show the superiority
of our SS-Conv over alternative convolutions in terms of both accuracy and efficiency.

2 Related Work

SE(3)-Equivariant Representation Learning SE(3)-equivariance is an important property in 3D
computer vision. In earlier works, researchers ease the problem by focusing on SO(3)-equivariance,
and design Spherical CNNs [6, 5] by stacking SO(3)-equivariant spherical convolutions which
are implemented in the spherical harmonic domain. Recently, a series of works [20, 25, 7] build
deep SE(3)-equivariant networks based on steerable kernels, which are parameterized as linear
combinations of basis kernels. Thomas et al. firstly propose Tensor Field Network (TFN) [20] to
learn SE(3)-equivariant features on irregular point clouds, and later, Fuchs et al. present SE(3)-
Transformer, which extends TFN with attention mechanism. However, those networks working
on point clouds are required to compute kernels with respect to different input points inefficiently.
To tackle this problem, 3D steerable convolution (ST-Conv) [25] is proposed to work on regular
volumetric data, so that basis kernels with respect to regular grids could be pre-computed; however, it
still encounters challenging computational demands due to the ignorance of data sparsity. Compared
to the above methods, our proposed sparse steerable convolution aims at efficient SE(3)-equivariant
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representation learning for volumetric data, which is realized with sparse tensors to accelerate the
computation.

Estimation and Tracking of Object Poses in 3D Space In the context of pose estimation, instance-
level 6D pose estimation is a classical and well-developed task, for which a body of works are
proposed. These works can be broadly categorized into three types: i) template matching [12] by
constructing templates to search for the best matched poses; ii) 2D-3D correspondence methods
[1, 14, 16, 19, 17], which establish 2D-3D correspondence via 2D keypoint detection [19, 17] or
dense 3D coordinate predictions [1, 14, 16], followed by a PnP algorithm to obtain the target pose;
iii) direct pose regression [26, 13, 23] via deep networks. Recently, a more challenging task of
category-level 6D pose and size estimation is formally introduced in [24], aiming at estimating poses
of 3D unknown objects with respect to a categorical normalized object coordinate space (NOCS).
The early works [24, 21] focus on regression of NOCS maps, and the poses can be obtained by
aligning NOCS maps with the observed depth maps. Later, methods of direct pose regression are
proposed thanks to the special designs of fusion of pose-dependent and pose-independent features
[2], decoupled rotation mechanism [4], or dual pose decoders [15]. Motivated by [24], Wang et. al
propose the task of category-level 6D pose tracking, aiming for the small change of object poses
between two adjacent frames in a sequence; they also present 6-PACK, a pose tracker estimating the
change of poses by matching keypoints of two frames.

3 Sparse Steerable Convolutional Neural Network

3.1 Background

3D Convolution A conventional 3D convolution can be formulated as follows:

fn+1(x) = [κ ? fn](x) =

∫
R3

κ(x− y)fn(y)dy, (1)

where fn(x) ∈ RKn , fn+1(x) ∈ RKn+1 , and κ : R3 → RKn+1×Kn is a continuous learnable kernel.

SE(3)-Equivariance Given a transformation πn(g) : RKn → RKn for a 3D rigid motion g ∈SE(3),
a 3D convolution in Eq. (1) is SE(3)-equivariant if there exists a transformation πn+1(g) : RKn+1 →
RKn+1 such that

[πn+1(g)fn+1](x) = [κ ? [πn(g)fn]](x). (2)
Such an SE(3)-equivariant convolution is steerable, since the feature fn+1(x) can be steered by
πn+1(g) in the feature space [25].

In general, the transformation πn(g) is a group representation of SE(3), which satisfies πn(g1g2) =
πn(g1)πn(g2). If g is decomposed into a 3D rotation r ∈ SO(3) and a 3D translation t ∈ R3, written
as g = tr, πn(g) can be defined as follows:

[πn(g)fn](x) = [πn(tr)fn](x) := ρn(r)fn(r
−1(x− t)), (3)

where ρn(r) : RKn → RKn is an SO(3) representation. The illustration is given in Fig. 1.

Rotation-Steerable Constraint To guarantee SE(3)-equivariance in Eq. (2), it can be derived that the
kernel κ of 3D convolution must be rotation-steerable [25], which satisfies the following constraint:

κ(rx) = ρn+1(r)κ(x)ρn(r)
−1. (4)

Irreducible Feature ρn(r) is an SO(3) representation, which can be decomposed into Fn irreducible
representations as follows:

ρn(r) = QT [

Fn⊕
i=0

Dli(r)]Q, (5)

where Q is a Kn × Kn change-of-basis matrix, Dli(r) is the (2li + 1) × (2li + 1) irreducible
Wigner-D matrix [8] of order li (li = 0, 1, 2, ...), and

⊕
represents block-diagonal construction of

{Dli(r)}, so that Kn =
∑Fn

i=0 2li + 1. Based on Eq. (3), fn(x) can be constructed by stacking
Fn irreducible features {f in(x) ∈ R2li+1}; each f in(x) is associated with a Dli(r). When li = 0,
D0(r) = 1, so that f in(x) is a scalar invariant to any rotation; when li > 0, f in(x) is a vector which
can be rotated by Dli(r).
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3.2 Sparse Steerable Convolution

3D STeerable Convolution (ST-Conv) enjoys the property of SE(3)-equivariance; however, as dis-
cussed in Sec. 1, it suffers from heavy computations as conventional 3D convolution does. Motivated
by recent success of SParse Convolution (SP-Conv) [9], we propose a novel design of Sparse Steer-
able Convolution (SS-Conv) with sparse tensors, which takes the natural sparsity of 3D data into
account, while strictly keeping the steerability of features.

Specifically, assuming κ is a discretized, s × s × s, cubic kernel with grid sites S =
{− s−12 , ...,−1, 0, 1, ..., s−12 }

3 (s is an odd), our proposed SS-Conv can be formulated as follows:

fn+1(x) = [κ ? fn](x) =

{∑
x−y∈S,σn(y)=1 κ(x− y)fn(y), if σn+1(x) = 1

0, if σn+1(x) = 0
(6)

s.t. ∀r ∈ SO(3), κ(rx) = ρn+1(r)κ(x)ρn(r)
−1,

where σn(x) represents the state of site x in the feature space RKn .1 σn(x) = 0 denotes an inactive
state at x, where fn(x) is in its ground state; when fn(x) is beyond the ground state, this site would
be activated as σn(x) = 1. In SS-Conv, we set the ground state as a zero vector.

Compared with ST-Conv, our sparse version is accelerated in two ways: i) convolutions are conducted
at activated output sites, not on the whole 3D volume, where the number of active sites only takes a
small proportion; ii) in the receptive field of each activated output site, only active input features are
convolved. For these purposes, we represent the input and output features as sparse tensors (Hn,Fn)
and (Hn+1,Fn+1), respectively. Hn and Hn+1 are hash tables recording the coordinates of active
sites only, while Fn and Fn+1 are feature matrices. For a sparse tensor, its hash table and feature
matrix correspond to each other row-by-row; that is, if rn+1,x is the row number of x in Hn+1, then
Fn+1[rn+1,x] = fn+1(x).

In this respect, the goal of SS-Conv is to convolve (Hn,Fn) with κ to obtain (Hn+1,Fn+1), which
can be implemented in three steps: i) Rotation-Steerable Kernel Construction (cf. 3.2.1) for
generation of κ, ii) Site State Definition (cf. 3.2.2) for the output hash table Hn+1, and Sparse
Convolutional Operation (cf. 3.2.3) for the output feature matrix Fn+1. We will introduce the
detailed implementations shortly.

3.2.1 Rotation-Steerable Kernel Construction

The key to satisfy the rotation-steerable constraint (4) is to control the angular directions of feature
vectors, and a recent research shows that spherical harmonics Y J = {Y Jj }Jj=−J give the unique
and complete solution [25]. Linear combination of the basis kernels based on spherical harmonics
produces the rotation-steerable convolutional kernel κ.

For simplicity, we firstly consider both input and output features as individual irreducible ones of
orders l and k, respectively; the kernel κkl : R3 → R(2k+1)×(2l+1) is parameterized as a linear
combination of basis kernels κkl,Jm : R3 → R(2k+1)×(2l+1):

κkl(x) =

k+l∑
J=|k−l|

∑
m

wkl,Jmκkl,Jm(x), (7)

where

κkl,Jm(x) =

J∑
j=−J

ϕm(‖x‖)Y Jj (
x

‖x‖
)Qkl

j . (8)

Qkl
j is a (2k + 1) × (2l + 1) change-of-basis matrix, also known as Clebsch-Gordan coefficients,

and ϕm is a continuous Gaussian radial function: ϕm(‖x‖) = e−
1
2 (‖x‖−m)2/ε2 . In the basis kernel

κkl,Jm (8), Y J controls the angular direction, while ϕm controls the radial one; then {κkl,Jm}
are linearly combined by learnable coefficients {wkl,Jm} as in Eq. (7) to further adjust the radial

1We only discuss convolutions (stride = 1) in our paper, since as pointed out in [25], convolutions (stride
> 1) damage the smoothness of features and break the properties of equivariance. For feature downsampling,
we follow [25] and use a combination of a convolution (stride = 1) with an average pooling.
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direction, which is the only degree of freedom in the process of optimization. Accordingly, the
angular direction is totally controlled by Y J , such that the rotation-steerable constraint is strictly
followed. In addition, the total number of learnable parameters in Eq. (7) is M [2min(k, l) + 1] (M
is the number of selected {m}), which is, in practice, marginally less than that of conventional 3D
convolution, which has (2k + 1)(2l + 1) parameters.

Finally, assuming that the input and output features are stacked irreducible features, whose orders
are {l1, · · · , lFn} and {k1, · · · , kFn+1} respectively, the rotation-steerable kernel of SS-Conv can be
constructed as follows:

κ(x) =

 κk1l1(x) · · · κk1lFn (x)
...

. . .
...

κkFn+1
l1(x) · · · κkFn+1

lFn (x)

 , (9)

with the size of Kn+1 ×Kn, where Kn+1 =
∑Fn+1

i=1 2kFn+1 + 1 and Kn =
∑Fn

i=1 2lFn + 1.

3.2.2 Site State Definition

The key to enable the efficiency of SS-Conv lies in the definition of site state. In general, for an
output grid site x, if any of input sites in its receptive field are active, this site will be activated, and
convolution at this site will be conducted; otherwise, this site will keep inactive, meaning that its
feature will be directly set as a zero vector (representing the ground state) without convolutional
operation. We formulate the above definition of state at site x as follows:

σn+1(x) =

{
1, if ∃ y ∈Hn and x− y ∈ S

0. others
(10)

The output hash table Hn+1 is then generated as {x : σn+1(x) = 1}.
The number of active sites defined in (10) will increase layer-by-layer, enabling long-range message
transfer. However, if dozens or even hundreds of convolutions are stacked, the rapid growth rate
of active sites would result in heavy computational burden and the so-called "submanifold dilation
problem" [9]. To alleviate this problem, we follow [9] and consider another choice of state definition
in our SS-Conv, which keeps the output state consistent with the input one at a same grid site, i.e.,
σn+1(x) = σn(x), such that Hn+1 = Hn. This kind of SS-Conv without dilation makes it possible
to construct a deep but efficient network for sparse volumetric data, and we term it as "Submanifold
SS-Conv".

In practice, we mix general SS-Convs and Submanifold SS-Convs in an alternating manner to achieve
high accuracy and efficiency.

3.2.3 Sparse Convolutional Operation

After obtaining Hn+1, the next target is to compute the values of Fn+1. Specifically, we firstly
initialize Fn+1 to zeros; then the feature vectors in Fn+1 are updated via the following algorithm:

ALGORITHM 1: Sparse Steerable Convolution

Input: (Hn,Fn), (Hn+1,Fn+1), {κ(s) : s ∈ S}
Output: (Hn+1,Fn+1)

1: R = {Rs = ∅ : s ∈ S} / / Initialize the rule book R.
2: for x in Hn+1 do / / Construct the rule book R.
3: for y in Hn do
4: if s = x− y ∈ S:
5: Append (rn+1,x, rn,y) to Rs. / / rn+1,x is the row number of x in Hn+1.
6: end for / / rn,y is the row number of y in Hn.
7: end for
8: for Rs in R do / / Update Fn+1.
9: for (rn+1,x, rn,y) in Rs do

10: Fn+1[rn+1,x]⇐ Fn+1[rn+1,x] + κ(s)× Fn[rn,y]
11: end for
12: end for

This process can be divided into two substeps. The first one is to construct a rule book R = {Rs :
s ∈ S}, where an active output site x is paired with an active input y in each Rs, if x− y = s. The
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Figure 2: An illustration of network architecture for instance-level 6D object pose estimation.

second one is to update Fn+1 according to the paired relationships recorded in R; for example, if the
paired relationship of output x and input y is recorded in Rs, the current fn+1(x) will be updated
by adding the multiplication of fn(y) and κ(s). In this process, the construction of R is very critical,
which helps to implement the second substep by matrix-matrix multiply-add operations on GPUs
efficiently.

3.3 Normalization and Activation

As conventional CNNs do, SS-Convs are also followed by normalization and activation, i.e., Ac-
tivation(Norm([κ ? fn](x))). Those operations of normalization and activation are required to be
specially designed, not to break the SE(3)-equivariance of features. Since each SE(3)-equivariant
feature is formed by stacking irreducible ones, without loss of generality, we take as an example an
irreducible feature f(x) with order l, so that the normalization can be formulated as follows:

Norm(f(x)) =

{
(f(x)− E[f(x)])/

√
Var[f(x)] + ε′, l = 0

f(x)/

√
E[‖f(x)‖2] + ε′, l > 0

(11)

where E[·] and Var[·] are population mean and variance, respectively. ε′ is a very small constant.
For the activation of f(x), if l = 0, ReLU can be chosen to increase non-linearity; if l > 0, we
follow [25] and multiply to f(x) a scalar, which is learned by a SS-Conv and applied to the Sigmoid
function:

Activation(f(x)) =
{

ReLU(f(x)), l = 0
Sigmoid([κ0l ? f ](x))f(x). l > 0

(12)

The above normalization and activation operations are both SE(3)-equivariant, since a feature vector
multiplying any scalar keeps its equivariance; when applying them to features formed by numerous
irreducible ones, we treat each irreducible member individually to ensure the equivariance.

4 Applications for Estimation and Tracking of Object Poses in 3D Space

4.1 Instance-level 6D Object Pose Estimation

Given an RGB-D image of a cluttered scene, instance-level 6D pose estimation is to estimate the 6D
poses of known 3D objects with respect to the camera coordinate system. As introduced in Sec. 3.1,
a 6D pose g ∈ SE(3) can be decomposed into a 3D rotation r ∈ SO(3) and a 3D translation t ∈ R3,
which makes sparse steerable convolutional network well suited for this task, due to: i) SS-Convs
extract strong SE(3)-equivariant features to decode a precise 6D pose; ii) the steerability of feature
maps helps to enable a second stage of pose refinement. Therefore, we propose an efficient general
pipeline based on SS-Convs for 6D pose estimation, as depicted in Fig. 2.
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Specifically, we firstly segment out the objects of interest via an off-the-shelf model of instance
segmentation, assigning each object with an RGB segment and a cropped point cloud; then each
3D object is voxelized and represented by a sparse tensor (H0,F0), where each feature in F0 is a
4−dimensional vector, containing RGB values and a constant "1". For the input tensor, we set the
site active if the quantified grid centered at this site encloses any points, and average point features
of those enclosed by a same grid. (H0,F0) is then fed into our pipeline in Fig. 2, where the pose
estimation could be achieved in the following two stages.

In the first stage, we construct an efficient SS-Conv-based backbone, which extracts hierarchical
SE(3)-equivariant feature maps, represented in the form of sparse tensors {(Hn,Fn)}. Those feature
tensors are used for interpolation of multi-level point-wise features by using a Tensor-to-Point
module, proposed in [10], transforming features of discretized grid sites to those of real-world point
coordinates. Each point feature is fed into two separate MLPs, regressing a point offset and a rotation,
respectively; the addition of the point coordinate and its offset generates a translation. The initially
predicted pose (r1, t1) of this stage is obtained by averaging point-wise predictions.

In the second stage, we refine the pose (r1, t1) by learning a residual pose (r2, t2), wherein a
Feature-Steering module is designed, generating transformed features {(H ′n,F ′n)} by efficiently
steering hierarchical backbone features {(Hn,Fn)} individually with (r1, t1). Again we interpolate
point-wise features from {(H ′n,F ′n)}, and average point-wise predictions to obtain (r2, t2). Finally,
the predicted 6D pose is updated as (r1r2, t1+r1t2). In addition, owing to the novel Feature-Steering
modules, this stage can be iteratively repeated, generating finer and finer poses.

4.1.1 The Feature-Steering Module

Feature-Steering module in the pipeline is to transform (Hn,Fn) of the backbone to (H ′n,F
′
n), where

a rigid transformation of Hn with (r, t) and a rotation of Fn with ρ(r) are included. Specifically, for
Fn, we compute ρ(r) as defined in (5) and rotate Fn by matrix multiplication; for Hn, we convert
the sites in it to the real-world point coordinates, which are then applied to a rigid transformation
of (r, t) and re-voxelized as grid sites. The same new sites are merged to a unique one, while their
features are averaged. We also use two another SS-Convs, each followed by steerable normalization
and activation, to enrich the new features and generate the final steered (H ′n,F

′
n).

4.2 Category-level 6D Object Pose and Size Estimation

Category-level 6D pose and size estimation is formally introduced in [24]. This is a more challenging
task, which aims to estimate categorical 6D poses of unknown objects, and also the 3D object sizes. To
tackle this problem, we use a similar network as that in Fig. 2, and make some adaptive modifications:
i) for each stage in Fig. 2, we add another two separate MLPs for point-wise predictions of 3D sizes
and point coordinates in the canonical space, respectively; ii) in each Feature-Steering module, the
real-world coordinates of all 3D objects are also scaled by their predicted 3D sizes to be enclosed
within a unit cube, for estimating more precise poses.

4.3 Category-level 6D Object Pose Tracking

Motivated by the above task of categorical pose estimation, category-level 6D pose tracking is also
proposed to estimate the small change of 6D poses in two adjacent RGB-D frames of an image
sequence [22]. Due to the available pose of the previous frame, the target object can be roughly
located in the current frame, avoiding the procedures of object detection or instance segmentation in
images. However, without a precise mask, the estimation of small pose change from noisy 3D data
is a big challenge for deep networks. Our sparse steerable convolutional network also surprisingly
performs well in such noisy data, even though we only conduct one-stage pose estimation that
achieves real-time tracking. For more details, one may refer to the supplementary material.

5 Experiments

Datasets We conduct experiments on the benchmark LineMOD dataset [11] for instance-level 6D
pose estimation, which consists of 13 different objects. For both category-level 6D pose estimation
and tracking, we experiment on REAL275 dataset [24], which is a more challenging real-world

7



Table 1: Quantitative comparisons of Plain12 based on different convolutions on the LineMOD
dataset [11].

Conv ADD(S) ↑ FPS ↑ #Param ↓
Dense-Conv 46.5 224 26.2 M
SP-Conv 62.8 486 26.2 M
ST-Conv 92.8 148 3.6 M
SS-Conv 93.5 404 3.6 M
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Figure 3: Training of Plain12 based on different convolutions on the LineMOD dataset [11].

dataset with 4, 300 training images and 2, 750 testing ones, containing object instances of 6 categories.
Following [24, 22], we augment the training data of REAL275 with synthetic RGB-D images.

Evaluation Metrics For instance-level task, we follow [23] and evaluate the results of LineMOD
dataset on ADD(S) metric. For the category-level tasks, we report the mean Average Precision (mAP)
of intersection over union (IoU) and n◦m cm, following [24]; mean rotation error (rerr) in degrees
and mean translation error (terr) in centimeters are also reported for pose tracking. Additionally, we
compare the numbers of parameters (#Param) and the running speeds (FPS) for different models.
Testing is conducted on a server with a GeForce RTX 2080ti GPU for a batch size of 32, and FPS is
computed by averaging the time cost of forward propagation on the whole dataset.

5.1 Comparisons with Different 3D Convolutions

We firstly conduct experiments to compare our proposed SS-Conv with other kinds of 3D convolutions,
including conventional 3D convolution (Dense-Conv), sparse convolution (SP-Conv) [9], and steerable
convolution (ST-Conv) [25], on the LineMOD dataset for instance-level 6D pose estimation. Among
those convolutions, SP-Conv improves the speed of Dense-Conv by considering data sparsity and
turns out to be efficient in some tasks of 3D semantic analysis(e.g., 3D object detection), while
ST-Conv constructs rotation-steerable kernels and then realizes the convolution based on Dense-Conv.

To meet various computational demands of different convolutions, those experiments are conducted on
a light plain architecture, termed as Plain12, in the same experimental settings, for a fair comparison.
The architecture consists of 12 convolutional layers, of which the kernel sizes are all set as 3× 3× 3;
for SS-Convs and ST-Convs, we set the superparameters of the radial function ϕm in Eq. (8) as
{m} = {0, 1} and ε = 0.6. We use ADAM to train the networks for a total of 30, 000 iterations,
with an initial learning rate of 0.01, which is halved every 1, 500 iterations. We voxelize the input
segmented objects into 64× 64× 64 dense/sparse grids, and set the training batch size as 16.

Quantitative results of different convolutions are listed in Table 1, which confirms the advantages of
our SS-Conv in both accuracy and efficiency. In terms of accuracy, SS-Conv achieves comparable
results on ADD(S) metric as ST-Conv does, which significantly outperforms those of Dense-Conv
and SP-Conv, indicating the importance of SE(3)-equivariant feature learning on pose estimation;with
preservation of relative poses of features layer-by-layer, the property of SE(3)-equivariance makes
feature learning capture more information of object poses. We also visualize the behaviors of the
four convolutions in the process of training in Fig. 3, where the learning based on SS-Conv/ST-Conv
converges better and faster than that of Dense-Conv/SP-Conv.
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Figure 4: Plottings of FPS and memory consumption versus different batch sizes for different
networks based on ST-Conv/SS-Conv. Experiments are conducted on LineMOD dataset[11].

Table 2: Quantitative comparisons of different methods on the LineMOD dataset [11] for instance-
level 6D object pose estimation. The evaluation metric is ADD(S).

Implicit[18] SSD6D[13] PointFusion DenseFusion DenseFusion G2L[3] Ours w/o Ours
+ICP +ICP [27] [23] (Iterative)[23] second stage

ape 20.6 65 70.4 79.5 92.3 96.8 92.9 97.4
bench. 64.3 80 80.7 84.2 93.2 96.1 97.4 99.3
camera 63.2 78 60.8 76.5 94.4 98.2 97.7 99.5
can 76.1 86 61.1 86.6 93.1 98.0 96.1 99.6
cat 72.0 70 79.1 88.8 96.5 99.2 98.8 99.8
driller 41.6 73 47.3 77.7 87.0 99.8 98.7 99.6
duck 32.4 66 63.0 76.3 92.3 97.7 91.1 97.8
egg. 98.6 100 99.9 99.9 99.8 100.0 100.0 99.9
glue 96.4 100 99.3 99.4 100.0 100.0 98.6 99.6
hole. 49.9 49 71.8 79.0 92.1 99.0 96.3 99.4
iron 63.1 78 83.2 92.1 97.0 99.3 98.7 99.2
lamp 91.7 73 62.3 92.3 95.3 99.5 99.5 99.7
phone 71.0 79 78.8 88.0 92.8 98.9 97.5 98.2

MEAN 64.7 79 73.7 86.2 94.3 98.7 97.2 99.2

In terms of efficiency, our sparse steerable convolutional networks are more efficient and flexible for
complex systems, e.g., for Plain12, SS-Conv brings about 2.7× speedup w.r.t. ST-Conv (404 FPS
versus 148 FPS) with a batch size of 32, as listed in Table 1. More results of FPS with improved
sizes of data batches are given in Fig. 4, where ST-Conv can be only run at the extreme batch size
of 48 on the GPU with 12G memory, while SS-Conv costs much less memory and can thus support
a batch size as large as 512; running with larger batch sizes further improves the efficiency of our
proposed SS-Conv (FPS goes to 725 when running with the batch size of 512 on Plain12). We also
compare the efficiency of ST-Conv and SS-Conv on two other deeper networks (dubbed Plain24 and
ResNet50, respectively); as shown in Fig. 4, SS-Conv consistently improves FPS over ST-Conv on
these two architectures, with less GPU memory consumption.

5.2 Comparisons with Existing Methods

Instance-level 6D Object Pose Estimation For the instance-level task, we compare the results of
our SS-Conv-based pipeline with existing methods on LineMOD dataset [11]. Quantitative results

9



Table 3: Quantitative comparisons of different methods on REAL275 dataset [24] for category-level
6D object pose and size estimation.

Method mAP

IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

NOCS [24] 78.0 30.1 7.2 10.0 13.8 25.2
SPD [21] 77.3 53.2 19.3 21.4 43.2 54.1
CASS [2] 77.7 − − 23.5 − 58.0
FS-Net [4] 92.2 63.5 − 28.2 − 60.8

DualPoseNet [15] 79.8 62.2 29.3 35.9 50.0 66.8

Ours w/o second stage 79.5 58.7 19.2 25.2 35.1 49.9
Ours 79.8 65.6 36.6 43.4 52.6 63.5

Table 4: Quantitative comparisons of different methods on REAL275 dataset [24] for category-level
6D object pose tracking.

Method Metric bottle bow camera can laptop mug MEAN

6-PACK [22]

5◦5cm ↑ 24.5 55.0 10.1 22.6 63.5 24.1 33.3
IoU25 ↑ 91.1 100.0 87.6 92.6 98.1 95.2 94.1
rerr ↓ 15.6 5.2 35.7 13.9 4.7 21.3 16.1
terr ↓ 4.0 1.7 5.6 4.8 2.5 2.3 3.5

Ours

5◦5cm ↑ 70.3 60.6 10.6 49.9 87.7 47.9 54.5
IoU25 ↑ 93.5 99.9 99.9 99.8 99.8 99.9 98.8
rerr ↓ 3.7 4.6 9.8 4.6 3.0 5.6 5.2
terr ↓ 1.9 1.2 2.0 2.7 2.4 1.1 1.9

are shown in Table 2, where our two-stage pipeline outperforms all the existing methods and achieves
a new state-of-the-art result of 99.2% on mean ADD(S) metric. We can also observe that the
second stage of pose refinement with Feature-Steering modules in our pipeline indeed improves the
predictions in the first stage, benefitting from the steerability of the feature spaces in SS-Convs.

Category-level 6D Object Pose and Size Estimation We conduct experiments on REAL275 [24]
for the more challenging category-level task. Quantitative results in Table 3 confirm the advantage
of our pipeline in the high-precision regime, especially on the precise metric of 5◦5cm, where we
improve the state-of-the-art result in [15] from 35.9% to 43.4%. The second stage of pose refinement
also plays an important role in this task, achieving remarkable improvements over the first stage.

Category-level 6D Object Pose Tracking We compare the results of our one-stage tracking pipeline
with the baseline of 6-PACK [22] on REAL275 [24]. In 6-PACK, the relative pose between two
frames is computed based on predicted keypoint pairs inefficiently, while our pipeline regresses
the pose in a direct way. The results in Table 4 show that our pipeline outperforms 6-PACK on all
the evaluation metrics, demonstrating the ability of SS-Conv-based network for fine-grained pose
estimation in noisy input data.

More implementation details and qualitative results are shown in the supplementary material.

Broader Impact

The studied problems of object pose estimation and tracking in 3D space are very important to many
real-world applications, including augmented reality, robotic grasping, and autonomous driving. By
precisely predicting object poses in the 3D space, virtual contents could be seamlessly embedded in
real environments, creating fascinating personal experience; on the contrary, less precise predictions
may cause property loss and even life threat, especially in autonomous driving. The contributed
solution based on SS-Conv would improve the overall level of safety.
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