
Object as Hotspots: An Anchor-Free 3D Object
Detection Approach via Firing of Hotspots

Qi Chen1,2, Lin Sun1 �, Zhixin Wang3, Kui Jia3,4, and Alan Yuille2

1 Samsung Strategy and Innovation Center, San Jose, CA 95134, USA
lin1.sun@samsung.com

2 The Johns Hopkins University, Baltimore, MD 21218, USA
{qchen42, ayuille1}@jhu.edu

3 South China University of Technology, Guangzhou, China
wang.zhixin@mail.scut.edu.cn, kuijia@scut.edu.cn

4 Pazhou Lab, Guangzhou, 510335, China

Abstract. Accurate 3D object detection in LiDAR based point clouds
suffers from the challenges of data sparsity and irregularities. Existing
methods strive to organize the points regularly, e.g. voxelize, pass them
through a designed 2D/3D neural network, and then define object-level
anchors that predict offsets of 3D bounding boxes using collective ev-
idences from all the points on the objects of interest. Contrary to the
state-of-the-art anchor-based methods, based on the very nature of data
sparsity, we observe that even points on an individual object part are in-
formative about semantic information of the object. We thus argue in this
paper for an approach opposite to existing methods using object-level
anchors. Inspired by compositional models, which represent an object
as parts and their spatial relations, we propose to represent an object
as composition of its interior non-empty voxels, termed hotspots, and
the spatial relations of hotspots. This gives rise to the representation
of Object as Hotspots (OHS). Based on OHS, we further propose an
anchor-free detection head with a novel ground truth assignment strat-
egy that deals with inter-object point-sparsity imbalance to prevent the
network from biasing towards objects with more points. Experimental
results show that our proposed method works remarkably well on ob-
jects with a small number of points. Notably, our approach ranked 1st

on KITTI 3D Detection Benchmark for cyclist and pedestrian detection,
and achieved state-of-the-art performance on NuScenes 3D Detection
Benchmark.

Keywords: Point Clouds, 3D Detection, Inter-Object Point-Sparsity
Imbalance

1 Introduction

Great success has been witnessed in 2D detection recently thanks to the evolu-
tion of CNNs. However, extending 2D detection methods to LiDAR based 3D
detection is not trivial because point clouds have very different properties from
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those of RGB images. Point clouds are irregular, so [47,25,38] have converted
the point clouds to regular grids by subdividing points into voxels and process
them using 2D/3D CNNs. Another unique property and challenge of LiDAR
point clouds is the sparseness. LiDAR points lie on the objects’ surfaces and
meanwhile due to occlusion, self-occlusion, reflection or bad weather conditions,
very limited quantity of points can be captured by LiDAR.

Inspired by compositional part-based models [12,50,6,4,15], which have shown
robustness when classifying partially occluded 2D objects and for detecting par-
tially occluded object parts [43], we propose to detect objects in LiDAR point
clouds by representing them as composition of their interior non-empty vox-
els. We define the non-empty voxles which contain points within the objects as
spots. Furthermore, to encourage the most discriminative features to be learned,
we select a small subset of spots in each object as hotspots, thus introducing
the concept of hotspots. The selection criteria are elaborated in Sec. 3.2. Tech-
nically, during training, hotspots are spots assigned with positive labels; during
inference hotspots are activated by the network with high confidences.

Compositional models represent objects in terms of object parts and their
corresponding spatial relations. For example, it can not be an actual dog if a
dog’s tail is found on the head of the dog. We observe the ground truth box
implicitly provides relative spatial information between hotspots and therefore
propose a spatial relation encoding to reinforce the inherent spatial relations
between hotspots.

We further realize that our hotspot selection can address an inter-object
point-sparsity imbalance issue caused by different object sizes, different dis-
tances to the sensor, different occlusion/truncation levels, and reflective surfaces
etc. A large number of points are captured on large objects or nearby objects to
the sensor while much fewer points are collected for small objects and occluded
ones. In the KITTI training dataset, the number of points in annotated bound-
ing boxes ranges from 4874 to 1. We categorize this issue as feature imbalance:
objects with more points tend to have rich and redundant features for predicting
semantic classes and localization while those with few points have few features
to learn from.

The concept of hotspots along with their spatial relations gives rise to a novel
representation of Object as Hotspots (OHS). Based on OHS, we design an
OHS detection head with a hotspot assignment strategy that deals with inter-
object point-sparsity imbalance by selecting a limited number of hotspots and
balancing positive examples in different objects. This strategy encourages the
network to learn from limited but the most discriminative features from each
object and prevents a bias towards objects with more points.

Our concept of OHS is more compatible with anchor-free detectors. Anchor-
based detectors assign ground truth to anchors which match the ground truth
bounding boxes with IoUs above certain thresholds. This strategy is object-
holistic and cannot discriminate different parts of the objects while anchor-free
detectors usually predict heatmaps and assign ground truth to individual points
inside objects. However, its nontrivial to design an anchor-free detector. With-
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out the help of human-defined anchor sizes, bounding box regression becomes
difficult. We identify the challenge as regression target imbalance due to
scale variance and therefore adopt soft argmin from stereo vision [13] to regress
bounding boxes. We show the effectiveness of soft argmin in handling regression
target imbalance in our algorithm.

The main contributions of proposed method can be summarized as follows:

– We propose a novel representation, termed Object as HotSpots (OHS) to
compositionally model objects from LiDAR point clouds as hotspots with
spatial relations between them.

– We propose a unique hotspot assignment strategy to address inter-object
point-sparsity imbalance and adopt soft argmin to address the regression
target imbalance in anchor-free detectors.

– Our approach shows robust performance for objects with very few points.
The proposed method sets the new state-of-the-art on Nuscene dataset and
KITTI test dataset for cyclist and pedestrian detection. Our approach achieves
real-time speed with 25 FPS on KITTI dataset.

2 Related Work

Anchor-Free Detectors for RGB Images Anchor-free detectors for RGB
images represent objects as points. Our concept of object as hotspots is closely
related to this spirit. ExtremeNet [46] generates the bounding boxes by detecting
top-most, left-most, bottom-most, right-most, and center points of the objects.
CornerNet [18] detects a pair of corners as keypoints to form the bounding
boxes. Zhou et al [45] focuses on box centers, while CenterNet [5] regards both
box centers and corners as keypoints. FCOS [33] and FSAF[49] detect objects by
dense points inside the bounding boxes. The difference between these detectors
and our OHS is, ours also takes advantage of the unique property of LiDAR
point clouds. We adaptively assign hotspots according to different point-sparsity
within each bounding box, which can be obtained from annotations. Whereas in
RGB images CNNs tend to learn from texture information [8], from which it is
hard to measure how rich the features are in each object.

Anchor-Free Detectors for Point Clouds Some algorithms without an-
chors are proposed for indoors scenes. SGPN [35] segments instances by seman-
tic segmentation and learning a similarity matrix to group points together. This
method is not scalable since the size of similarity matrix grows quadratically with
the number of points. 3D-BoNet [39] learns bounding boxes to provide a bound-
ary for points from different instances. Unfortunately, both methods will fail
when only partial point clouds have been observed, which is common in LiDAR
point clouds. PIXOR [38] and LaserNet [26] project LiDAR points into bird’s
eye view (BEV) or range view and use standard 2D CNNs to produce bounding
boxes in BEV. Note that we do not count VoteNet [27] and Point-RCNN [30] as
anchor-free methods due to usage of anchor sizes.
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Efforts Addressing Regression Target Imbalance The bounding box cen-
ters and sizes appear in different scales. Some objects have relatively large sizes
while others do not. The scale variances in target values give rise to the scale
variances in gradients. Small values tend to have smaller gradients and have
less impact during training. Regression target imbalance is a great challenge for
anchor-free detectors. Anchor-free detectors [33,49,5,18,45,14] became popular
after Feature Pyramid Networks (FPN) [21] was proposed to handle objects of
different sizes.

Complimentary to FPNs, anchor-based detectors [29,9,22,23] rely on anchor
locations and sizes to serve as normalization factors to guarantee that regression
targets are mostly small values around zero. Multiple sizes and aspect ratios are
hand-designed to capture the multi-modal distribution of bounding box sizes.
Anchor-free detectors can be regarded as anchor-based detectors with one an-
chor of unit size at each location and thus anchor-free detectors don’t enjoy the
normalizing effect of different anchor sizes.

3 Object as Hotspots

3.1 Hotspot Definition

We represent an object as composition of hotspots. Spots are defined as non-
empty voxels which have points and overlap with objects. Only a subset of spots
are assigned as hotspots and used for training, to mitigate the imbalance of
number of points and the effect of missing or occluded part of objects. Hotspots
are responsible for aggregating minimal and the most discriminative features
of an object for background/foreground or inter-class classification. In training,
hotspots are assigned by ground truth; in inference, hotspots are predicted by
the network.

Intuitively the hotspots should satisfy three properties: 1) they should com-
pose distinguishable parts of the objects in order to capture discriminative fea-
tures; 2) they should be shared among objects of the same category so that
common features can be learned from the same category; 3) they should be min-
imal so that when only a small number of LiDAR points are scanned in an object,
hotspots still contain essential information to predict semantic information and
localization, i.e. hotspots should be robust to objects with a small number of
points.

3.2 Hotspot Selection & Assignment

Hotspot selection & assignment is illustrated in Fig. 2 (a). Unlike previous
anchor-free detectors [38,45], which densely assign positive samples inside ob-
jects, we only select a subset of spots on objects as hotspots. We assign hotspots
to the output feature map of the backbone network. After passing through the
backbone network, a neuron on the feature map can be mapped to a super voxel
in input point cloud space. We denote a voxel corresponding to a neuron on the
output feature map as Vn, where n indexes a neuron.
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The annotations do not tell which parts are distinguishable, but we can infer
them from the ground truth bounding boxes Bgt. We assume Vn is an interior
voxel of the object if inside Bgt. Then we consider Vn as a spot if it’s both
non-empty and inside Bgt. We choose hotspots as nearest spots to the object
center based on two motivations: 1) Points away from the object center are less
reliable compared to those near the object centers, i.e., they are more vulnerable
to the change of view angle. 2) As stated in FCOS [33], locations closer to object
centers tend to provide more accurate localization.

We choose at most M nearest spots as hotspots in each object. M is an adap-
tive number determined by M = C

V ol , where C is a hyperparameter we choose
and V ol is the volume of the bounding box. Because relatively large objects
tend to have more points and richer features, we use M to further suppress the
number of hotspots in these objects. If the number of spots in an object is less
than M , we assign all spots as hotspots.

(e) 3D Boxes          
Regression

(f) Spatial Relation Encoder

(d) Hotspot  
Classification

(c) Convolution(a) Voxelization (b) Backbone

Hotspot
Mask

Bounding
Boxes

Predicted Boxes

Predicted 
Hotspots

Point cloud
from sensor

Ground Truth

(g) Hotspot
Selection

& Assignment
Inference

Training

Fig. 1: Outline of HotSpotNet. The point cloud is (a) voxelized, and passed
through the (b) backbone network to produce 3D feature maps. These feature
maps go through (c) a shared convolution layer, pass into three modules to per-
form (d) Hotspot Classification and (e) 3D Bounding Box regression (f) Spatial
Relation Encoder to train the network, and (g) selected hotspots are assigned as
positive labels to (d) Hotspot Classification. During inference only (d) Hotspot
Classification and (e) 3D Bounding Box Regression are performed to obtain
hotspots and bounding boxes respectively.
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4 HotSpot Network

Based on OHS, we architect the Hotspot Network (HotSpotNet) for LiDAR point
clouds. HotSpotNet consists of a 3D feature extractor and Object-as-Hotspots
(OHS) head. OHS head has three subnets for hotspot classification, box regres-
sion and spatial relation encoder.

The overall architecture of our proposed HotSpotNet is shown in Fig. 1. The
input LiDAR point clouds are voxelized into cuboid-shape voxels. The input
voxels pass through the 3D CNN to generate the feature maps. The three sub-
nets will guide the supervision and generate the predicted 3D bounding boxes.
Hotspot assignment happens at the last convolutional feature maps of the back-
bone. The details of network architecture and the three subnets for supervision
are described below.

4.1 Object-as-Hotspots Head

Our OHS head network consists of three subnets: 1) a hotspot classification
subnet that predicts the likelihood of class categories; 2) a box regression subnet
that regresses the center locations, dimensions and orientations of the 3D boxes.
3) a spatial relation encoder for hotspots.

Hotspot Classification The classification module is a convolutional layer with
K heatmaps each corresponding to one category. The hotspots are labeled as
ones. The targets for all the non-hotspots are zeros. We apply a gradient mask
so that gradients for non-hotspots inside the ground truth bounding boxes are set
to zero. That means they are ignored during training and do not contribute to
back-propagation. Binary classification is applied to hotspots and non-hotspots.
Focal loss [22] is applied at the end,

Lcls =

K∑
k=1

α(1− pk)γ log(pk) (1)

where,

pk =

{
p , hotspots

(1− p) ,non-hotspots

p is the output probability, and K is the number of categories. The total
classification loss is averaged over the total number of hotspots and non-hotspots,
excluding the non-hotspots within ground truth bounding boxes.

Box Regression The bounding box regression only happens on hotspots. For
each hotspot, an eight-dimensional vector [dx, dy, z, log(l), log(w), log(h), cos(r),
sin(r)] is regressed to represent the object in LiDAR point clouds. dx, dy are
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Dense 
Assignment
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Fig. 2: (a) Illustration of hotspot selection & assignment. Only selected non-
empty voxels on objects are assigned as hotspots. Previous anchor-free detectors
[33,49] densely assign locations inside objects as positive samples. (b) Spatial re-
lation encoding: we divide the object bounding box in BEV into quadrants by the
orientation (front-facing direction) and its perpendicular direction. Quadrants I,
II, III, and IV are color-coded with green, blue, purple and orange respectively
in the illustration. (c) Illustration of how points of a vehicle are classified into
different quadrants, with the same set of color-coding as (b).

the axis-aligned deviations from the hotspot to the object centroid. The hotspot
centroid in BEV can be obtained by:

[xh, yh] = (
j + 0.5

L
(xmax − xmin) + xmin,

i+ 0.5

W
(ymax − ymin) + ymin), (2)

where i, j is the spatial index of its corresponding neuron on the feature map
with size W × L, and [xmin, xmax], [ymin, ymax] are the ranges for x, y when we
voxelize all the points.

As discussed in Sec. 2, anchor-free detectors suffer from regression target im-
balance. Instead of introducing FPN, i.e. extra layers and computational over-
head to our network, we tackle regression target imbalance by carefully designing
the targets: 1) We regress log(l), log(w), log(h) instead of their original values
because log scales down the absolute values; 2) We regress cos(r), sin(r) instead
of r directly because they are constrained in [−1, 1] instead of the original angle
value in [−π, π]; 3) We use soft argmin [13] to help regress dx, dy and z. To
regress a point location in a segment ranging from a to b by soft argmin, we
divide the segment into N bins, each bin accounting for a length of b−a

N . The
target location can be represented as t = ΣN

i (SiCi), where Si represents the
softmax score of the ith bin and Ci is the center location of the ith bin. Soft
argmin is widely used in stereo vision to predict disparity in sub-pixel resolu-
tion. We notice soft argmin can address regression target imbalance by turning
the regression into classification problem and avoiding regressing absolute values.
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Smooth L1 loss [9] is adopted for regressing these bounding box targets and
the regression loss is only computed over hotspots.

Lloc(x) =

{
0.5x2 , |x| < 1
|x| − 0.5 , otherwise

(3)

Spatial Relation Encoder Inspired by compositional models, we incorpo-
rate hotspot spatial relations to our HotSpotNet. Since convolution is translation-
invariant, it’s hard for a CNN to learn spatial relations without any supervision.
Therefore, we explore the implicit spatial relation from annotations. We observe
that most target objects for autonomous driving can be considered as rigid ob-
jects (e.g. cars), so the relative locations of hotspots to object centers do not
change, which can be determined with the help of bounding box centers and ori-
entations. We thus categorize the relative hotspot location to the object center
on BEV into a one-hot vector representing quadrants, as shown in Fig. 2 (b)&(c).
We train hotspot spatial relation encoder as quadrant classification with binary
cross-entropy loss and we compute the loss only for hotspots.

Lq =

3∑
i=0

−[qi log(pi) + (1− qi) log(1− pi)] (4)

where i indexes the quadrant, qi is the target and pi the predicted likelihood
falling into the specific quadrant.

4.2 Learning and Inference

The final loss for our proposed HotSpotNet is the weighted sum of losses from
three branches:

L = δLcls + βLloc + ζLq (5)

Where, δ, β and ζ are the weights to balance the classification, box regression
and spatial relation encoder loss.

During inference, if the corresponding largest entry value of theK-dimensional
vector of the classification heatmaps is above the threshold, we consider the lo-
cation as hotspot firing for the corresponding object. Since one instance might
have multiple hotspots, we further use Non-Maximum Supression (NMS) with
the Intersection Over Union (IOU) threshold to pick the most confident hotspot
for each object. The spatial relation encoder does not contribute to inference.

5 Experiments

In this section, we summarize the dataset in Sec. 5.1 and present the imple-
mentation details of our proposed HotSpotNet in 5.2. We evaluate our method
on KITTI 3D detection Benchmark [7] in Sec. 5.3 and NuScenes 3D detection
dataset [1] in Sec. 5.4. We also analyze the advantages of HotSpotNet in Sec. 5.5
and present ablation studies in Sec. 5.6.
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5.1 Datasets and Evaluation

KITTI Dataset KITTI has 7,481 annotated LiDAR point clouds for train-
ing with 3D bounding boxes for classes such as cars, pedestrians and cyclists. It
also provides 7,518 LiDAR point clouds for testing. In the rest of paper, all the
ablation studies are conducted on the common train/val split, i.e. 3712 LiDAR
point clouds for training and 3769 LiDAR point clouds for validation. To further
compare the results with other approaches on KITTI 3D detection benchmark,
we randomly split the KITTI annotated data into 4 : 1 for training and valida-
tion and report the performance on KITTI test dataset. Following the official
KITTI evaluation protocol, average precision (AP) based on 40 points is applied
for evaluation. The IoU threshold is 0.7 for cars and 0.5 for pedestrians and
cyclists.
NuScenes Dataset The dataset contains 1, 000 scenes, including 700 scenes
for training, 150 scenes for validation and 150 scenes for test. 40, 000 frames
are annotated in total, including 10 object categories. The mean average preci-
sion (mAP) is calculated based on the distance threshold (i.e. 0.5m, 1.0m, 2.0m
and 4.0m). Additionally, a new metric, nuScenes detection score (NDS) [1], is
introduced as a weighted sum of mAP and precision on box location, scale,
orientation, velocity and attributes.

5.2 Implementation Details

Backbone Network In experiments on KITTI, we adopt the same backbone
as used by SECOND [37]. We set point cloud range as [0, 70, 4], [−40, 40], [−3, 1]
and voxel size as (0.025, 0.025, 0.05)m along x, y, z axis. A maximum of five
points are randomly sampled from each voxel and voxel features are obtained
by averaging corresponding point features.

As for NuScenes, we choose the state-of-the-art method CBGS [48] as our
baseline. Input point cloud range is set to [−50.4, 50.4], [−50.4, 50.4], [−5, 3] along
x, y, z, respectively. We implement our method with ResNet [10] and PointPil-
lars (PP) [17] backbones and report each performance. We set voxel size as
(0.1, 0.1, 0.16)m for ResNet backbone and (0.2, 0.2)m for PP backbone. For each
hotspot, we also set (log l, logw, log h) as outputs of soft argmin to handle the
size variances for 10 object categories.
Object-as-Hotspots Head Since the output feature map of the backbone
network is consolidated to BEV, in this paper we assign hotspots in BEV as well.
Our OHS head consists of a shared 3× 3 convolution layer with stride 1. We use
a 1× 1 convolution layer followed by sigmoid to predict confidence for hotspots.
For regression, we apply several 1 × 1 convolution layers to different regressed
values. Two 1× 1 convolution layers are stacked to predict soft argmin for (dx,
dy) and z. Additional two 1 × 1 convolution layers to predict the dimensions
and rotation. We set the range [−4, 4] with 16 bins for dx, dy and 16 bins for
z, with the same vertical range as the input point cloud. We set C = 64 to
assign hotspots. For hotspot spatial relation encoder, we use another a 1 × 1
convolution layer with softmax for cross-entropy classification. We set γ = 2.0
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and α = 0.25 for focal loss. For KITTI, the loss weights are set as δ = β = ζ = 1.
For NuScenes we set δ = 1 and β = ζ = 0.25.
Training and Inference For KITTI, we train the entire network end-to-end
with adamW [24] optimizer and one-cycle policy [32] with LR max 2.25e−3,
division factor 10, momentum ranges from 0.95 to 0.85 and weight decay 0.01.
We train the network with batch size 8 for 150 epochs. During testing, we keep
100 proposals after filtering the confidence lower than 0.3, and then apply the
rotated NMS with IOU threshold 0.01 to remove redundant boxes.

For NuScenes, we set LR max as 0.001. We train the network with batch
size 48 for 20 epochs. During testing, we keep 80 proposals after filtering the
confidence lower than 0.1, and IOU threshold for rotated NMS is 0.02.
Data Augmentation Following SECOND[37], for KITTI, we apply random
flipping, global scaling, global rotation, rotation and translation on individual
objects, and GT database sampling. For NuScenes, we adopt same augmenta-
tion strategies as in CBGS [48] except we add random flipping along x axis and
attach GT objects from the annotated frames. Half of points from GT database
are randomly dropped and GT boxes containing fewer than five points are aban-
doned.

5.3 Experiment results on KITTI benchmark

As shown in Table 1, we evaluate our method on the KITTI test dataset. For fair
comparison, we also show the performance of our implemented SECOND [37]
with same voxel size as ours, represented by HR-SECOND in the table. For the
3D object detection benchmark, solely LiDAR-based, our proposed HotSpotNet
outperforms all published LiDAR-based, one-stage detectors on cars, cyclists and
pedestrians of all difficulty levels. In particular, by the time of submission our
method ranks 1st among all published methods on KITTI test set for cyclist and
pedestrian detection. HotSpotNet shows its advantages on objects with a small
number of points. The results demonstrate the success of representing objects as
hotspots. Our one-stage approach also beats some classic 3D two-stage detectors
for car detection, including those fusing LiDAR and RGB images information.
Still, our proposed OHS detection head is complimentary to architecture design
in terms of better feature extractors.

Inference Speed The inference speed of HotSpotNet is 25FPS, tested on
KITTI dataset with a Titan V100. We compare inference speed with other ap-
proaches in Table 1. We achieve significant performance gain while maintaining
the speed as our baseline SECOND [37].

5.4 Experiment results on NuScenes dataset

We present results on NuScenes validation set (Table 2) and test set (Table 3).
We reproduced the baseline CBGS [48] based on implementation from Center-
Point [42] without double-flip testing. Our reproduced mAPs are much higher
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Method Input Stage FPS
3D Detection (Car) 3D Detection (Cyclist) 3D Detection (Pedestrian)
Mod Easy Hard Mod Easy Hard Mod Easy Hard

ComplexYOLO[31] L One 17 47.34 55.93 42.60 18.53 24.27 17.31 13.96 17.60 12.70
VoxelNet[47] L One 4 65.11 77.47 57.73 48.36 61.22 44.37 39.48 33.69 31.51

SECOND-V1.5[37] L One 33 75.96 84.65 68.71 - - - - - -
HR-SECOND[37] L One 25 75.32 84.78 68.70 60.82 75.83 53.67 35.52 45.31 33.14
PointPillars[17] L One 62 74.31 82.58 68.99 58.65 77.10 51.92 41.92 51.45 38.89
3D IoU Loss[44] L One 13 76.50 86.16 71.39 - - - - - -

HRI-VoxelFPN[34] L One 50 76.70 85.64 69.44 - - - - - -
ContFuse [20] I + L One 17 68.78 83.68 61.67 - - - - - -

MV3D [2] I + L Two 3 63.63 74.97 54.00 - - - - - -
AVOD-FPN [16] I + L Two 10 71.76 83.07 65.73 50.55 63.76 44.93 42.27 50.46 39.04
F-PointNet [28] I + L Two 6 69.79 82.19 60.59 56.12 72.27 49.01 42.15 50.53 38.08
F-ConvNet [36] I + L Two 2 76.39 87.36 66.69 65.07 81.89 56.64 43.38 52.16 38.8

MMF [19] I + L Two 13 77.43 88.40 70.22 - - - - - -
PointRCNN [30] L Two 10 75.64 86.96 70.70 58.82 74.96 52.53 39.37 47.98 36.01

FastPointRCNN[3] L Two 17 77.40 85.29 70.24 - - - - - -
STD [40] L Two 13 79.71 87.95 75.09 61.59 78.69 55.30 42.47 53.29 38.35

HotSpotNet L One 25 78.31 87.60 73.34 65.95 82.59 59.00 45.37 53.10 41.47

Table 1: Performance of 3D object detection on KITTI test set. “L”, “I” and
“L+I” indicates the method uses LiDAR point clouds, RGB images and fusion
of two modalities, respectively. FPS stands for frame per second. Bold numbers
denotes the best results for single-modal one-stage detectors. Blue numbers are
results for best-performing detectors.

than the results presented in the original CBGS paper. As shown in Table 2,
our HotSpotNet outperforms CBGS by 1.8 and 3.2 in mAP for the PointPil-
lars and ResNet backbone respectively. In Table 3, our approach outperforms all
detectors on the NuScenes 3D Detection benchmark using a single model.

Method car truck bus trailer

constr-
uction
vehicle

pede-

strian

motor-

cycle bike
traffic
cone

barr-

ier mAP NDS
CBGS-PP 81.3 49.7 59.0 32.1 13.4 73.1 51.5 23.5 51.3 52.6 48.8 59.2

HotSpotNet-PP 83.3 52.7 63.7 35.3 15.3 74.8 53.7 25.5 50.3 52.0 50.6 59.8
CBGS-ResNet 82.9 52.9 64.6 37.5 18.3 80.3 60.1 39.4 64.8 61.8 56.3 62.8

HotSpotNet-ResNet 84.0 56.2 67.4 38.0 20.7 82.6 66.2 49.7 65.8 64.3 59.5 66.0

Table 2: 3D object detection mAP on NuScenes val set.

5.5 Analysis

We argue that our approach advances in preventing the network from biasing
towards objects with more points without compromising performance on these
objects. We analyze the effect of different number of hotspots and performance
on objects with different number of points.
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Method car truck bus trailer

constr-
uction
vehicle

pede-

strian

motor-

cycle bike
traffic
cone

barr-

ier mAP NDS

SARPNET [41] 59.9 18.7 19.4 18.0 11.6 69.4 29.8 14.2 44.6 38.3 31.6 49.7
PointPillars [17] 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9 30.5 45.3
WYSIWYG [11] 79.1 30.4 46.6 40.1 7.1 65.0 18.2 0.1 28.8 34.7 35.0 41.9

CBGS [48] 81.1 48.5 54.9 42.9 10.5 80.1 51.5 22.3 70.9 65.7 52.8 63.3
HotSpotNet-ResNet (Ours) 83.1 50.9 56.4 53.3 23.0 81.3 63.5 36.6 73.0 71.6 59.3 66.0

Table 3: 3D detection mAP on the NuScenes test set
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Fig. 3: Performances with different C values on KITTI val. The horizontal axis
also shows the number of active hotspots on average with different C values.

Different Number of Hotspots In Sec. 3.2, we set M = C
V ol as the maximum

number of hotspots in each object during training. Here we present the perfor-
mances with different C values: 32, 64, 128, 256, Inf , where Inf means we assign
all spots as hotspots. The results are shown in Fig. 3. We can see that generally
the larger C is, the higher performance in detecting cars. We only perceive a sig-
nificant drop when C = 32 and the overall performance in detecting cars is not
sensitive to different values of C. The performance in detecting cyclists reaches
its peak when C = 128. The lower the C value, the better performance in detect-
ing pedestrians. The performance of detecting pedestrians does not change much
when C ≤ 64. To balance the performance on all classes and prevent over-fitting
on one class, we choose C = 64 in our paper.

Performance on objects with different number of points Comparison
between SECOND [37] and our approach for objects with different number of
points is shown in Fig. 4. Our approach is consistently better to detect objects
with different number of points and less likely to miss objects even with a small
number of points. Notably, the relative gain of our approach compared to SEC-
OND increases as the number of points decreases, showing our approach is more
robust to sparse objects.

5.6 Ablation Studies

Effect of different target assignment strategies We show the effect of our
hotspot assignment strategy in Tab. 4. We present three types of target assign-
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Fig. 4: Recall of detecting objects with different number of points on KITTI val.

ment strategy for hotspot while keeping all other settings the same. 1) Dense
means we assign all voxels (empty and non-empty) inside objects as hotspots
while ignoring voxels around ground truth bounding box boundaries. 2) We
assign all non-empty spots as hotspots, corresponding to C = inf in Tab. 4.
The maximum number of hotspots in each object is M = C

V ol as explained in
Sec. 3.2. 3) We set C = 64 in our approach to adaptively limit the number of
hotspots in each objects. For reference, we also include our baseline, SECOND
[37]. The results show that ours (Dense) and ours (C = inf) have similar perfor-
mances. When considering pedestrian detection ours (C = inf) is slightly better
than ours (Dense). Compared to SECOND, they are both better in car and cy-
clist detection, especially in the hard cases, but worse in pedestrian detection.
The inter-object point-sparsity imbalance makes the pedestrian category hard
to train. After balancing the number of hotspots over all objects, ours (C = 64)
outperforms all other target assignment strategies by a large margin in both
cyclist and pedestrian detection, while the performance for cars barely changes.
This justifies our motivation to force the network to learn the minimal and most
discriminative features for each objects.

Method
3D Detection on Car 3D Detection on Cyclist 3D Detection on Pedestrian
Mod Easy Hard Mod Easy Hard Mod Easy Hard

SECOND [37] 81.96 90.95 77.24 61.62 80.13 57.77 64.19 69.14 57.99
Ours (Dense) 82.2 91.09 79.69 66.45 85.85 62.16 62.82 68.88 55.78

Ours (C = inf) 82.93 91.98 80.46 67.66 86.41 63.5 62.08 68.22 56.64
Ours (C = 64) 82.75 91.87 80.22 72.55 88.22 68.08 65.9 72.23 60.06

Table 4: Effect of different target assignment strategy. Dense: assigning both
empty and non-empty voxels inside objects as hotspots; C=inf: assigning all
spots as hotspots; C=64: assigning limited number of spots as hotspots.
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Effect of spatial relation encoder To prove the effectiveness of our hotspot
spatial encoder, we show the results of our HotSpotNet with and without spa-
tial relation encoder on KITTI validation split for cars in Table 5. We can see
that when our algorithm is trained with the spatial relation encoder, the overall
performance is boosted. Especially, the great improvement can be observed in
hard cases for cyclists and pedestrians.

Method
3D Detection on Car 3D Detection on Cyclist 3D Detection on Pedestrian
Mod Easy Hard Mod Easy Hard Mod Easy Hard

Ours w/o quadrant 82.27 91.75 79.96 69.31 89.48 65.04 65.45 72.77 58.36
Ours w quadrant 82.75 91.87 80.22 72.55 88.22 68.08 65.9 72.23 60.06

Diff ↑ 0.48 ↑ 0.12 ↑ 0.26 ↑ 3.24 ↓ −1.24 ↑ 3.04 ↑ 0.45 ↓ −0.54 ↑ 1.7

Table 5: Effect of quadrants as spatial relation encoding.

Effect of soft argmin We show the importance of soft argmin in Table
6. We perceive improvements by using soft argmin instead of the raw values.
Particularly on small objects, e.g. cyclists and pedestrians, soft argmin consid-
erably improves the performance by avoiding regression on absolute values with
different scales.

Method
3D Detection on Car 3D Detection on Cyclist 3D Detection on Pedestrian
Mod Easy Hard Mod Easy Hard Mod Easy Hard

Ours w/o soft argmin 82.31 91.53 79.88 68.65 88.11 64.36 63.7 67.62 57.15
Ours w/ soft argmin 82.75 91.87 80.22 72.55 88.22 68.08 65.9 72.23 60.06

Diff ↑ 0.44 ↑ 0.34 ↑ 0.34 ↑ 3.9 ↑ 0.11 ↑ 3.72 ↑ 2.9 ↑ 4.59 ↑ 2.91

Table 6: Performance of soft argmin on (x, y, z) coordination.

6 Conclusion

We propose a novel representation, Object-as-Hotspots and an anchor-free detec-
tion head with its unique target assignment strategy to tackle inter-object point-
sparsity imbalance. Spatial relation encoding as quadrants strengthens features
of hotspots and further boosts accurate 3D localization. Extensive experiments
show that our approach is effective and robust to sparse point clouds. Meanwhile
we address regression target imbalance by carefully designing regression targets,
among which soft argmin is applied. We believe our work sheds insights on re-
thinking 3D object representations and understanding characteristics of point
clouds and corresponding challenges.
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